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Disclaimer

A bit of everything
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The wireless channel has a multidimensional nature!



Tensor perspective to wireless communications
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Tensor signal processing in wireless comm.

Key features

• Exploit the multidimensional structure of the channel and its 
multiple forms of diversity

• Blind/semi-blind channel estimation & symbol detection
under more relaxed conditions (compared to matrix-based SP)

• Complexity management of large-scale filter optimizations
(e.g. massive MIMO, beamforming, equalizers..)

• Noise-relisient multidimensional constellation designs



Outline

• Channel modeling & estimation

• Space-time-frequency MIMO schemes

• Relay-based communications

• Multi-linear beamforming design

• Multi-linear constellation design



A bit of tensor decompositions



What is a Tensor?

• An intuitive definition…



What is a Tensor?

• A “nicer” mathematical definition

i-th position

(i,j,k)-th coordinate

: outer product

• Tensor as a multi-linear map



Unfolding a tensor into matrices



An useful operator: The n-mode product

• Defines a product between a tensor and a matrix (or vector)

• Multiple n-mode products

Concept of “multi-linear compression”

[De Lathauwer et al. ’2000]

[Kolda & Bader, 2009]



The “canonical” tensor decomposition

• Decomposition in a sum of rank-1 components

Also known as:
• Canonical polyadic decomposition (CPD)   [Hithcock’1927]

• Parallel Factor decomposition (PARAFAC)  [Harshman’1970] [Carroll & Chang’1970]

Tensor rank R →minimum # of rank-1 tensors yielding      in a combination



Canonical polyadic decomposition (CPD)

• Outer-product notation

• n-mode product notation

• “Vectorized” form

: Khatri-Rao product



Tucker decomposition

Full multi-linear map

• n-mode product notation • “Vectorized” form

[Tucker’1966]



CONFAC decomposition

CONFAC decomposition → equivalent to a constrained Tucker-3 decomposition 

with PARAFAC-decomposed core tensor  in terms of (repeated) canonical vectors

X

A B
= 1I

C

2R

3R

1R


=

F

f 1

f•Ψ

f•Ω

f•Φ
=

1I
2I

2I

3I
3I

G

2R

G1R

3R



• Scalar writing of                            :

withwhere

→ The columns of the constraint matrices            and
are canonical basis vectors (1’s and 0’s)

PARAFAC:

CONFAC decomposition



Tensor-Train (TT) decomposition

• D-dimensional tensor as a “train” of smaller 3D tensors

[Oseledets’2011]

Overcome the curse of dimensionality (for “big” tensors)



Channel modeling & estimation



• Tensor notation (4D tensor, rank- )
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“Tensorizing” the channel model

• Usual (matrix) notation

Fixing the temporal mode → 3D tensor



• Expanding the tensor (+ 2D antenna arrays, e.g. URA)

“Tensorizing” the channel model (cont’d)

• Expanding the tensor (+ polarization) → 7 dimensions
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Motivation (i.i.d chanels or structured channels?)

• Realistic channel models are not i.i.d→highly structured 

• Algebraic channel structure is heterogeneous in different
domains (e.g. space, frequency, time, polarization, etc...)

• Multidimensional channel structure is lost when working
with vectorized (or “matricized”) versions of the channel



MIMO Channels & Compressed Sensing

Proceedings of the IEEE, vol. 98, no. 6, 2010



Exploiting multilinearity & sparsity: Tensor-CS

• Hybrid A/D architecture

IEEE Access, 2019

• “Compressed” measurement tensor:

MIMO 
channel

Combiner  
(RF chains)

Precoded
pilots

Subcarrier 
allocation



Exploiting multilinearity & sparsity: Tensor-CS
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Exploiting multilinearity & sparsity: Tensor-CS

• Expanding the 3D sparse channel tensor... 

Multi-linear compression !

• Equivalent “vectorized” Kronecker- CS model

[Caiafa & Cichocki’2013]

[Friedland, Li, Schonfeld ’2014]

[Duarte & Braniuk’2012]



Tensor-CS vs. Vector-CS

Significant reduction on
computational complexity



Tensor-OMP algorithm

8 paths 16 paths

# antennas # RF chains

Tx 64 32

Rx 4 2



• Recasting the channel using Tensor Train model

Tensor Train Based Channel Estimation

• Time-frequency selective channel, URA, dual polarized antennas

7D - channel tensor
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Example:  64 x 32 URA MIMO, T=10, F= 128, 4 polarization pairs
# coefficients: 10.485.760  → very large tensor!!

How to reduce complexity of channel 
representation and estimation ?

CPD CPD CPD CPD CPD



Tensor Train Massive MIMO Channel Modeling

Coupled LS  optimization

Factors retrieval

Tensor Train – SVD (TT-SVD) [Oseledets’2011]

Dimensionality reduction

CPD’s



Complexity reduction

5-D channel tensor
(delay and Doppler not included)

Tensor Train Massive MIMO Channel Modeling

Low SNR region

PARAFAC-INVAR: [Qian, Fu, Sidiropoulos'2018]
CP-VDM: [Sørensen & De Lathauwer’2013] 

JIRAFE approach

• More accurate estimates for low SNR’s

• Faster convergence & reduced complexity 
than 5-order CPD fitting algorithms

• Gains should be higher for 7-D channel



TensorPilots: Kronecker-structured pilot schemes
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TensorPilots: Kronecker-structured pilot schemes

• Exploting separability & sparsity at both link ends

• Received pilot signals: rank-1 tensor

Channel estimation with TensorPilots

1. Truncated Higher-Order SVD →

2. Per-mode LS or CS recovery →
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Space-time-frequency (STF) MIMO



CONFAC based MIMO transceivers
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Idea [de Almeida and Favier, 2008]

◼ Design flexible schemes for ST-MIMO signaling

◼ Capitalize on the CONFAC uniqueness properties at 
the receiver to jointly recover the channel and symbols

antenna allocation (M x F)

code allocation (Q x F)
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• Variable antenna allocation patterns: Multiple data streams per transmit antenna

• Variable spreading code reuse patterns: Spreading codes can be reused by TX antennas

• Transmission flexibility: Several schemes possible by adjusting the allocation matrices

Key features

CONFAC based MIMO transceivers

◼ Received signal (n-th symbol, p-th chip, k-th Rx antenna): 

Note: columns of           and are canonical 
basis vectors (1’s and 0’s)

PARAFAC DS-CDMA model
[Sidiropoulos et al, 2000]

Resource allocation tensorwith



CONFAC based MIMO transceivers

Example (R=3 streams, Q=3 codes, M=2 TX antenas, F=4 coded signals)

stream #1, code #2, antenna #1 stream #2, code #3, antenna #2 

Note: Allocations can be optimized



46

◼ Partial uniqueness properties:

 Symbol-only recovery (only S is unique)

 Channel-only recovery (only H is unique)

 Joint symbol-channel recovery (both S and H are unique)

CONFAC based MIMO transceivers

Essential uniqueness result

impliesIf

[Stegeman & de Almeida, 2009]

Let

◼ Unfolded representations (“constrained-CP” writing)

is unique

full column rank; full column rankAssumptions:
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CONFAC based MIMO transceivers

CONFAC scheme (R=2, Q=2, M=4):

KRST coding:

→ Both schemes:  
Blind detection without the knowledge   
of the spreading codes

→CONFAC scheme: 
Lower BER than the KRST coding scheme
(trade-off: rate reduction by a factor of 2)

CONFAC scheme versus PARAFAC scheme (KRST coding)
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Tensor Space-Time-Frequency (T-STF) Coding

• Received signal (noiseless case)

• T-STF coding model (5D)

→ Tucker-(2-5) model

Idea [de Almeida and Favier, 2014]

◼ Design generalized STF coding scheme 
with allocation flexibility over different 
STF domains (MIMO-OFDM-CDMA)

Code 
tensor

Channel 
tensor

Subcarriers (F)

Rx antennas (K)

Chips (J)

Code block (P)

Symbols (N)

N

MR

P

K

J

F

Code tensor diagram

J

M

P

R

F

Received signal tensor diagram

with

Symbol 
matrix

allocation 
tensor

spreading 
tensor



N

MR

P

K

J

F

N

M

K

P

M

M

T-STF vs. CONFAC vs. PARAFAC schemes

T-STF

N

M

K

R

P CONFAC

PARAFAC

R M

J

M

P

R

F

Multi-stream
STF spreading & multiplexing

Full allocations

ST spreading & multiplexing
Code reuse + spatial allocations

Multi-stream
Time-only spreading



T-STF performance

Random allocations, Kronecker-ALS algorithm

Tradeoff between 
spreading and 
frequency diversities

TSTF @ F=2 subcarriers TSTF @ F=4 subcarriers

Frequency diversity 
advantage (slope)



Relaying-based communications 



Tensor-based MIMO Relaying

54

Idea: Use tensor coding at source and relay to jointly estimate 
the involved channels (source-relay and relay-destination) 

[Ximenes et al, 2015]

[Fernandes et al, 2016]

[Sokal et al, 2020]

[Znyed et al, 2018]

Space 
(Rx antennas)

Time slots

Symbol periods
Time frames

Nested Tucker-(2,4) model



• Processing steps

Tensor-based MIMO Relaying

Unfolding

Filtering

Kronecker approximation problem

Recast as a rank-1 tensor approximation problem (→ classical algorithms)



Multi-linear beamforming



Why multi-linear beamforming?

• As the size of a sensor array grows, the 
beamforming operation needs more...
❖ Samples to estimate statistics

❖ Computation time to obtain weights

• Idea: Exploit the algebraic structure of 
separable arrays→multi-linearity property



Separable Arrays

Idea: Kronecker filters as multilinear maps!

• Consider the trilinear filter:

• Reshape the input signal vector into a 3d tensor:



Separable Arrays

• From tensor algebra, the trilinear filter output can be written as

Keep fixed Linear w.r.t. each subfilter

Main idea:
• Design each “subfilter” instead of full filter 
• Computational complexity reduction



Tensor Beamforming Algorithms

• Alternating optimization approaches
❖ Tensor LMS     [Rupp & Schwarz’2015]

❖ Tensor GSC     [Miranda et al’2015]

❖ Tensor MMSE [Ribeiro et al’2016, Ribeiro et al’2019]

❖ Tensor LCMV  [Ribeiro et al’2019]

❖ Tensor Frost   [Ribeiro et al’2019]

• Example: Trilinear filter design 

1. Random initialization for 

2. Optimize for         with                  fixed – 𝑂(𝑁1
3) multiplications

3. Optimize for         with fixed – 𝑂 𝑁2
3 multiplications

4. Optimize for         with                   fixed – 𝑂 𝑁3
3 multiplications

5. Has converged?  If not, go back to step 2                

𝑁-dimensional filter 
with 𝑁 = 𝑁1𝑁2 𝑁3

𝑁1 𝑁2 𝑁3

Each filter is updated with alternating optimization methods

𝑂 𝑁1
3 + 𝑁2

3 + 𝑁3
3 vs. 𝑂(𝑁3)



Simulation Results - [Ribeiro et al’2019]

Significant reduction of multiplications with small performance losses 

~100x gain

~3dB loss



Multi-linear constellation design



Signal model

with

Principle
Any M-PSK constellation can be 
factorized into                          
different constellation sets:

Multi-linear constellation design

Multi-linear M-PSK constellation



Multi-linear constellation design

Transceiver

• Received signal after matched filtering (MF)

• Decoding as N-th order rank-one tensor approx. problem 

• Equivalent solution: maximize the tensor Rayleigh quotient



Multi-linear constellation design

Receiver processing
Kronecker Rank-One Detector (Kronecker-RoD)

Note: Decoding can be parallelized→ reduced latency



Simulation Results

• TPMD-4 outperforms hard/soft Viterbi decoding, especially at the low SNR 

• Increasing the order of the tensor (→ number of Kronecker product terms) 
provides better results due to increased denoising capability 

Multi-linear QPSK modulation, ½ code rate



Wrap up

• Tensors are powerful tools for modeling wireless 
communication systems (due to their multi-dimensional nature)

• Tensor modeling reveals “structured sparsity” and
“structured low-rankness” of realistic wireless channels

• Joint (semi-)blind channel estimation & symbol detection, 
thanks to uniqueness property of tensor models

• Multi-linear filtering/beamforming schemes→ significant
complexity reduction with small performance losses

• Multi-linear constellations offer noise-robust detection; it 
can be exploited for phy-layer security



Research directions & challenges

• Exploitation of block-sparsity, off-grid 
problems, multi-linear basis tracking 
solutions

• Optimize the design of tensor 
precoder/combiner and allocations
to maximize performance
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• Tensor-based algorithms that capture system “nonidealities” (e.g. unknown
channel structure, hardware imperfections) →more realistic models & 
algorithms

• Distributed tensor-based algorithms (e.g. sensor networks/IoT, cell-free MIMO)
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