
Neural networks, flexible activation functions,
and tensor approximations

joint work with Y. Qi, P. Comon, P. Dreesen, M. Ishteva, Y. Zniyed,
S. Miron, D. Brie

Konstantin Usevich, CNRS (CRAN, Nancy)

23.11.2022, Workshop on Tensor Theory and Methods, Paris

Overview

Flexible activations

Link to CPD

Coupled matrix/tensor factorization

Low-rank tensor recovery

Overview

Flexible activations

Link to CPD

Coupled matrix/tensor factorization

Low-rank tensor recovery

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Feed-forward neural networks

▶ Huge success in computer vision [Krizhevsky et al., 2014]

▶ Very popular in data science, signal processing, engineering

▶ Basic problem supervised classification:
Given a training set of objects x(k) ∈ Rm and (discrete) labels yk,
find (“learn”) the map f such that f(x(k)) ≈ yk,
which generalizes well: (f(xtest) ≈ ytest on unseen test data)

2 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Neural networks: early ideas

real neuron

x1

x2
...

xm

y

w1

w2

wm

artificial neurons

y =

{
1, w1x1 + · · ·+ wmxm ≥ θ (a threshold),

0, otherwise

(McCulogh, Pitts, 1943), (Rosenblatt, 1958)

3 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Perceptron and activation functions

x1

x2
...

xm

y

y=g(vTx+b)

v1
v2

vm

▶ v ∈ Rm — weights, b — “bias”
▶ g(t) — activation (“thresholding”) function

e.g., sigmoid g(t) =
1

1 + e−t

Main issues:
▶ level sets are hyperplanes
▶ classifier only for linearly separable classes

4 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Modern feed-forward neural networks

Some key features:

▶ Stacking several layers:
lots of layers (deep learning) → better performance

▶ Shift to other activation functions, e.g. ReLu:

g(t) = max(0, t)

▶ Structured weights (e.g., convolutional)

▶ Clever optimization algorithms, parallel computations on GPUs

5 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Multilayer perceptron

x1

xm

z1

zr

zk=g(vT
1,kx+b1,k)

y1

yn

...
...

...

yk=ϕ(vT
2,kz+b2,k)

Hidden layerInput
layer

Output
layer

▶ v1,k, v2,k — vectors of weights, b1,k, b2,k — biases
▶ g, ϕ — univariate activation functions

Theorem (Universal Approximation Theorem, e.g., (Pinkus, 1997))

Any continuous f : Ω→ Rn on compact Ω can be approximated to
arbitrary accuracy by a multilayer perceptron fθ (with ϕ(t) = t and
non-polynomial continuous g).

Can we add flexibility to g to achieve more compact representation?
6 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

From fixed to flexible activations

Simplest 2-layer model: no activation/bias at output

u1

um

z1

zr

zk=gk(v
T
ku)

y1

yn

...
...

...

y=Wz

Hidden layer Output
layer

▶ fixed activations (classic setup): gk(t) = g(t+ bk)

▶ flexible activations: different (ideally learned) gk

7 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Related work

Neural network/approximation literature:

▶ deep spline networks [Aziznejad, Unser, 2019]

▶ ridge approximations [Lin, Pinkus, 1993]

Other work:

▶ independent component analysis [Comon, Jutten, 2010]

▶ block-structured nonlinear system identification [Dreesen et al., 2015]

8 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Decomposition/approximation problem

u1

um

z1

zr

zk=gk(v
T
ku)

y1

yn

...
...

...

yk=Wz

Given a multivariate map f : Rm → Rn, decompose (approximate) it as

f(u) = w1g1(v
T
1u)︸ ︷︷ ︸

single node (branch)

+ · · ·+wrgr(v
T
r u),

where

▶ vk ∈ Rm, gk — different univariate functions

▶ W =
[
w1 · · · wr

]
∈ Rn×r — output weights

9 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Geometric interpretation: ridge functions
Single output:

u1

um

z1

zr

zk=gk(v
T
ku)

y...
...

y=z1+...+zr

Hidden layerInput
layer

Output
layer

f(u) = g1(v
T
1u) + · · ·+ gr(v

T
r u)

−3 −2 −1 0 1 2 3−5
0

5

−8

−6

−4

−2

0

2

4

6

8

≈

−3 −2 −1 0 1 2 3
−5

0

5
−8

−6

−4

−2

0

2

4

6

8

+

−3 −2 −1 0 1 2 3

−4

−2

0

2

4
−1

−0.5

0

0.5

1

1.5

+

−3 −2 −1 0 1 2 3−5

0
5

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

sum of “plane waves” or ridge functions [Lin, Pinkus, 1993]

10 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Independent component analysis (source separation)

Linear mixing model:
x = V s

x =

[x1

...
xm

]
︸ ︷︷ ︸

sensors

∈ Rn, V =
[
v1 · · · vr

]︸ ︷︷ ︸
mixing matrix

, s =

[s1
...
sr

]
︸ ︷︷ ︸

sources

∈ Rr

if sk are independent, the 2nd characteristic function has expansion

Ψx(u) = ψs1(v
T
1u) + · · ·+ ψsr (v

T
r u)

See [Comon, Jutten, 2010], [Rajih, Comon, 2006]

11 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Compact matrix notation

u1

um

z1

zr

zk=gk(v
T
ku)

y1

yn

...
...

...

yk=Wz

rewrite as f(u) = Wg(VTu)

with
▶ V =

[
v1 · · · vr

]
∈ Rm×r

▶ g(t1, · · · , tr) = [g1(t1) · · · gr(tr)]T

“Block-structured” form:

u1

...

um

f(u1, . . . , um)

y1
...
yn
→

u1

...

um

VT

t=VTu

g1(t1)
t1

...

gr(tr)
tr

W

y=Wz

z1

zr

y1
...

yn

12 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Nonlinear dynamical system identification
Identification of Parallel Wiener-Hammerstein systems

LTI

LTI

SNL

LTI

LTI

+
u y ≈

LTI

LTI

SNL

SNL

LTI

LTI

... +
u y

; reduced to approximation of a multivariate map:

u1

...

um

f(u1, . . . , um)

y1
...
yn

≈
u1

...

um

VT

t=VTu

g1(t1)
t1

...

gr(tr)
tr

W

y=Wz

z1

zr

y1
...

yn

▶ called decoupling in system identification literature

▶ applicable to other block structures

13 / 39

Overview

Flexible activations

Link to CPD

Coupled matrix/tensor factorization

Low-rank tensor recovery

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Exact factorization (decoupling)

Goal: Given f , decompose it as f(u) = Wg(VTu)

u1

...

um

f(u1, . . . , um)

y1
...
yn

→
u1

...

um

VT

g1(t1)
t1

...

gr(tr)
tr

W

z1

zr

y1
...

yn

with V ∈ Rm×r, W ∈ Rn×r, g(t1, · · · , tr) = [g1(t1) · · · gr(tr)]T

Key idea of [Dreesen et al, 2015]: Jacobian of f has form

Jf (u) = W

[
g′
1(v

T
1u)

. . .

g′
r(v

T
ru)

]
VT

only diagonal term depends on u

14 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Exact factorization: CPD of Jacobian tensor
Algorithm.

1. Evaluate Jf (u) at N “operating points” u1, . . . ,uN ∈ Rm

2. Stack them into a tensor:

=J
J(u1)
J(u2)

J(uN)

. .
.

m

n

N

3. Joint matrix diagonalization ↔ CPD J = [[W,V,H]]

J(u(1))=WD(1)VT,

...
J(u(N))=WD(N)VT

←→ J = + · · · +
w1

v1

h1

wr

vr

hr

4. Retrieve vk, wk from factors W,V of the CPD

5. hk contains evaluations of g′k

15 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Factorization and exact CPD

f(u) = Wg(VTu)⇒ J = + · · · +
w1

v1

h1

wr

vr

hr

where (hk)i = g′k(v
T
kui)

An example of recovery:
(exact decomposition,
m = n = 2, r = 2)

36 Shortcomings in the noiseless case

−10 0 10
−0.8

0

0.1

h1

h2

v
T
i u

h
i

Figure 3.3: In the noiseless case, when assuming an exact decompo-

sition exists, the third factor H of the CPD of J yields exactly the

derivatives of g1, . . . , gr, when plotting the columns of H with respect

to the internal variables vT
1 u, . . . ,vT

r u. The third factor H of the CP

decomposition behaves differently under the influence of noise or with

too large values of r (Figures 3.4 and 3.5).

thanks to uniqueness of CPD of J

Issues:

▶ CPD is a relaxation: structure of H is lost

▶ need extra step to estimate gk

16 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Polynomial case

Decompose polynomial map f : Rm → Rn (degree d) as

f(u) = w1g1(v
T
1u) + · · ·+wrgr(v

T
r u), (1)

with vk ∈ Rm,wk ∈ Rn, gk(t) = c1,kt+ c2,kt
2 + · · ·+ cd,kt

d

[Comon, Qi, U., 2015], [U., Dreesen, Ishteva, 2020]: (1) is equivalent to
a coupled tensor decomposition

T 1 = JW,V, cT1 K,
T 2 = JW,V,V, cT2 K,

...
T d = JW,V, . . . ,V︸ ︷︷ ︸

d times

, cTd K,

Useful for studying uniqueness [Comon, Qi, U., 2017] (X-rank theory)

17 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Generic uniqueness of the factorization

f(u) = w1g1(v
T
1u)+ · · ·+wrgr(v

T
r u), gk(t) = c1,kt+c2,kt

2+ · · ·+cd,ktd

Theorem ([Comon, Qi, U., 2017], simplified)

Let s, 1 ≤ s ≤ d, and r be such that

r ≤ min

((
m+ s− 1

s

)
, C(m,n, d)

)
n.

Then for a general r-term f(u), we can recover uniquely (up to scaling
ambiguities) wk, vk and cj,k, j ≥ s

Examples:

▶ overall identifiability: r ≤ nm
▶ nonlinear terms can be identifiable for r ≤ nm(m+1)

2

18 / 39

Overview

Flexible activations

Link to CPD

Coupled matrix/tensor factorization

Low-rank tensor recovery

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Tensor approximations for NN compression/learning

1. (Lebedev et al., 2015)

Compress convolutional layer tensors (W is sparse and structured).

2. (Novikov et al., 2016), Compression of fully-connected layers (e.g.
tensorization of large matrix W +TT approximation)

3. (Cohen et al., 2016): replace the nonlinear transfromation
g(WTx+ b) with product pooling unit
→ (Khrulkov et al, 2018) link with tensor formats (TT, HT, ...)

4. (Janzamin, et al. 2016): learning the linear layer W from tensor
approximation of the score function

19 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Framework: neural network compression
Goal: compress a part of a neural network:

→

with the flexible model: f(u) ≈Wg(VTu)

▶ pretrained network ⇒ can evaluate derivatives

▶ use Jacobian tensor CP approximation

20 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Drawbacks of the Jacobian approach

min
wk,vk,hk

∥∥∥J − JW,V,HK
∥∥∥
F
, where J:,:,i = Jf (ui)

Issues:

▶ Need to estimate activation functions + loss of uniqueness

-10 0 10

-2.5

-2

-1.5

-1

-0.5

0

0.5

g
1
'

-10 0 10

0

0.2

0.4

0.6

0.8

1

g
2
'

-5 0 5

-0.5

0

0.5

1

1.5

g
3
'

▶ derivatives are approximated instead of function values

21 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Idea: add constraints
Activation function from a parameterized basis:

gl(t) = c0,l + c1,lϕ1(t) + · · ·+ cd,lϕd(t).

22 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Proposed approach: coupled tensor-matrix factorization

For a base gl(t) = c0,l + c1,lϕ1(t) + · · ·+ cd,lϕd(t), we solve

min
wk,vk,hk,zk

∥∥∥J − [|W,V,H|]
∥∥∥2︸ ︷︷ ︸

Jacobian

+λ ·
∥∥∥F−WZT

∥∥∥2︸ ︷︷ ︸
function evaluation (data fidelity)

subject to hl = Xl · cl, zl = Yl · cl, with

Xl =

[
0 ϕ′

1(v
T
l u

(1)) ··· ϕ′
d(v

T
l u

(1))

...
...

...
0 ϕ′

1(v
T
l u

(N)) ··· ϕ′
d(v

T
l u

(N))

]
, Yl =

[
1 ϕ1(v

T
l u

(1)) ··· ϕd(v
T
l u

(1))

...
...

...
1 ϕ1(v

T
l u

(N)) ··· ϕd(v
T
l u

(N))

]
.

▶ constraints to preserve the structure

▶ data fidelity term to approximate well the predictions
⇒ avoid fine-tuning

23 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Test of compression

ICDAR 2003 dataset:
≈163000 train, ≈ 5300 test,
36 classes

CharNet
[Jaderberg et al., 2014]

compress the conv3 layer (viewed as fully connected layer R4096 → R128)
24 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

CMTF compression performance
▶ use only 360 operating points ui (10 per class from training set)
▶ no fine-tuning and 4x compression

min
wk,vk,hk,zk

∥∥∥J − [|W,V,H|]
∥∥∥2︸ ︷︷ ︸

Jacobian

+λ ·
∥∥∥F−WZT

∥∥∥2︸ ︷︷ ︸
function evaluation

subject to constraints on H and Z

25 / 39

Overview

Flexible activations

Link to CPD

Coupled matrix/tensor factorization

Low-rank tensor recovery

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Nonlinear dynamical system identification
Identification of Parallel Wiener-Hammerstein systems

LTI

LTI

SNL

LTI

LTI

+
u y

LTI

LTI

SNL

SNL

LTI

LTI

... +
u y

; reduced to approximation of a multivariate map: f(u) ≈Wg(VTu)

u1

...

um

f(u1, . . . , um)

y1
...
yn
→

u1

...

um

VT

t=VTu

g1(t1)
t1

...

gr(tr)
tr

W

y=Wz

z1

zr

y1
...

yn

▶ called decoupling in system identification literature

▶ applicable to other block structures

26 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Parallel Wiener-Hammerstein system identification
Goal: estimate

LTI

LTI

SNL

SNL

LTI

LTI

... +
u y

from input and output data u(t), v(t).

Current approaches are two-step: estimate first

LTI

LTI

SNL

LTI

LTI

+
u y

Can we identify PWH system directly?
27 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Parallel Wiener Hammerstein system: FIR case

a1(q)

...
ar(q)

g1(·)
...

gr(·)

b1(q)

...
br(q)

+
u(t) y(t)

Assumption:

▶ ak(q), bk(q) — finite impulse response (FIR) filters with lags L1, L2

▶ gk(·) are univariate (static) functions

y =

r∑
k=1

bk ∗ (gk(ak ∗ u))

where

▶ ak ∈ RL1 , bk ∈ RL2 — filter coefficients

▶ gk(·) applied elementwise to ak ∗ u (filtered input)

convolutional NN with flexible activation functions

28 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Our setup: FIR and polynomial activations

a1(q)

...
ar(q)

g1(·)
...

gr(·)

b1(q)

...
br(q)

+
u(t) y(t)

1. ak, bk are FIR with lags L1 and L2

⇒ y depends on L = L1 + L2 − 1 past inputs:

y(t) = f(u(t), u(t− 1), . . . , u(t− L+ 1)),

2. gk — polynomial of degree d
⇒ f is a multivariate polynomial in (u(t), u(t− 1), . . . , u(t− L+ 1))

identification from truncated Volterra kernels up to order d

29 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Apply plain decoupling to parallel Wiener-Hammerstein

[Dreesen, Ishteva, 2021]:

Drawbacks:

▶ Inflates tensor rank (rL1 branches)

▶ Structured factors (similar to [Kibangou, Favier, 2010])

Our approach: use tensor recovery

30 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Low-rank tensor recovery

▶ Low-rank tensor completion from few elements

?

?

?
= [[A,B,C]]

▶ Tensor recovery: reconstruct a low-rank T = [[A,B,C]]
from M samples (projections) P(T):

P(T) =
[
⟨T ,S1⟩F · · · ⟨T ,SM ⟩F

]T
— linear sampling (projection) operator

31 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Key ideas of our approach
We mimick the CPD Jacobian method of [Dreesen et al. 2015], but

1. take operating points µk, k = 1, . . . , N with Vandermonde structure:

uµ =
[
1 µ µ2 . . . µL−1

]T
, µ ∈ C

2. split the nonlinearity into homogeneous parts:

f(u) = f (0) + f (1)(u) + · · ·+ f (d)(u)

3. where gradient of f (s) — partial contraction of s-th Volterra kernel:

∇f (s)(u) = s ·H(s) •2 u · · · •s u.

4. stack the gradients into a “measurement” vector

zk =
[
(∇f (1)(uµk

))T (∇f (2)(uµk
))T · · · (∇f (2)(uµk

))T
]

5. z = (z1, . . . , zN) must be a sampling of a low-rank tensor

32 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Main result

a1(q)

...
ar(q)

g1(·)
...

gr(·)

b1(q)

...
br(q)

+
u(t) y(t)

Proposition [U., Dreesen, Ishteva, 2021]
z is a projection of a rank-r polyadic decomposition

z = P(T), T =

r∑
ℓ=1

aℓ ⊗ bℓ ⊗ hℓ︸ ︷︷ ︸
[[A,B,H]]

,

aℓ ∈ RL1 , bℓ ∈ RL2 , coefficients of gℓ can be recovered from hℓ

parallel Wiener-Hammerstein system — rank-r tensor recovery

33 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Example

r = 2 branches, filter lengths L1 = 3, L2 = 3 with coefficients:

A =

 0.3 0.6
−0.4 0.2
0.1 0.3

 , B =

0.3 0.2
0.2 0.3
0.1 0.01

 ,
and nonlinearities g1(x1) = 3x31 − x21 + 5, g2(x2) = −5x32 + 3x2 − 7.

Correct recovery with 30 random µ on the unit circle:

Â =

 1 1
−1.3333− i0.8305 · 10−8 0.3333 + i0.4203 · 10−9

0.3333− i0.2210 · 10−8 0.4999 + i0.7007 · 10−10

 ,
h1(t) = t2 − 0.2222t, h2(t) = t2 − 0.2.

34 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Tensor recovery

For z ∈ CM , rank r, and sampling operator P : CL1×L2×L3 → CM find

min
A∈CL1×r,B∈CL2×r,H∈CL3×r

∥P([[A,B,H]])− z∥22,

Algorithm (alternating least squares).
Input: initializations A0, B0, H0.

1. For k=1,2,.... until a stopping criterion is satisfied

2. Ak ← argminA ∥P([[A,Bk−1,Hk−1]])− z∥22;
3. Bk ← argminB ∥P([[Ak,B,Hk−1]])− z∥22;
4. Hk ← argminH ∥P([[Ak,Bk,H]])− z∥22.
5. End for

35 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Dependence on intialization

Convergence for 10 initializations (prev. example):

0 50 100 150 200 250
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Residual, different realizations

36 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Open questions and references

Ongoing work:

▶ deeper architectures with flexible activation functions: identifiability
and algorithms

▶ optimization (better/scalable algorithms, convergence)

▶ robustness to perturbations, stability (link with uniqueness)

▶ link with other tensor approximation methods for NN compression

37 / 39

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Thank you!

And all my collaborators:

▶ Jacobians (CPD-based methods):
K. U., P. Dreesen and M. Ishteva., Decoupling multivariate polynomials:

interconnections between tensorizations, JCAM, 2020.

▶ Generic uniqueness (X-rank):
P. Comon, Y. Qi and K. U., X-rank and identifiability for a polynomial

decomposition model, SIAGA, 2017.

▶ NN compression/ CMTF:
Y.Zniyed, K. U., S. Miron, D. Brie, Tensor-based framework for training

flexible neural networks, 2021, arXiv:2106.13542 .

▶ Tensor recovery for convolutional case:
K. U., P. Dreesen, M. Ishteva, Low-rank tensor recovery for

Jacobian-based Volterra identificationof parallel Wiener-Hammerstein

systems, proceedings of SYSID 2021, arXiv:2109.09584 .

38 / 39

	Flexible activations
	Link to CPD
	Coupled matrix/tensor factorization
	Low-rank tensor recovery

