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Feed-forward neural networks

▶ Huge success in computer vision [Krizhevsky et al., 2014]

▶ Very popular in data science, signal processing, engineering

▶ Basic problem supervised classification:
Given a training set of objects x(k) ∈ Rm and (discrete) labels yk,
find (“learn”) the map f such that f(x(k)) ≈ yk,
which generalizes well: (f(xtest) ≈ ytest on unseen test data)
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Neural networks: early ideas

real neuron

x1

x2
...

xm

y

w1

w2

wm

artificial neurons

y =

{
1, w1x1 + · · ·+ wmxm ≥ θ (a threshold),

0, otherwise

(McCulogh, Pitts, 1943), (Rosenblatt, 1958)
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Perceptron and activation functions

x1

x2
...

xm

y

y=g(vTx+b)

v1
v2

vm

▶ v ∈ Rm — weights, b — “bias”
▶ g(t) — activation (“thresholding”) function

e.g., sigmoid g(t) =
1

1 + e−t

Main issues:
▶ level sets are hyperplanes
▶ classifier only for linearly separable classes
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Modern feed-forward neural networks

Some key features:

▶ Stacking several layers:
lots of layers (deep learning) → better performance

▶ Shift to other activation functions, e.g. ReLu:

g(t) = max(0, t)

▶ Structured weights (e.g., convolutional)

▶ Clever optimization algorithms, parallel computations on GPUs
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Multilayer perceptron

x1

xm

z1

zr

zk=g(vT
1,kx+b1,k)

y1

yn

...
...

...

yk=ϕ(vT
2,kz+b2,k)

Hidden layerInput
layer

Output
layer

▶ v1,k, v2,k — vectors of weights, b1,k, b2,k — biases
▶ g, ϕ — univariate activation functions

Theorem (Universal Approximation Theorem, e.g., (Pinkus, 1997))

Any continuous f : Ω→ Rn on compact Ω can be approximated to
arbitrary accuracy by a multilayer perceptron fθ (with ϕ(t) = t and
non-polynomial continuous g).

Can we add flexibility to g to achieve more compact representation?
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From fixed to flexible activations

Simplest 2-layer model: no activation/bias at output

u1

um

z1

zr

zk=gk(v
T
ku)

y1

yn

...
...

...

y=Wz

Hidden layer Output
layer

▶ fixed activations (classic setup): gk(t) = g(t+ bk)

▶ flexible activations: different (ideally learned) gk
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Related work

Neural network/approximation literature:

▶ deep spline networks [Aziznejad, Unser, 2019]

▶ ridge approximations [Lin, Pinkus, 1993]

Other work:

▶ independent component analysis [Comon, Jutten, 2010]

▶ block-structured nonlinear system identification [Dreesen et al., 2015]
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Decomposition/approximation problem

u1

um

z1

zr

zk=gk(v
T
ku)

y1

yn

...
...

...

yk=Wz

Given a multivariate map f : Rm → Rn, decompose (approximate) it as

f(u) = w1g1(v
T
1u)︸ ︷︷ ︸

single node (branch)

+ · · ·+wrgr(v
T
r u),

where

▶ vk ∈ Rm, gk — different univariate functions

▶ W =
[
w1 · · · wr

]
∈ Rn×r — output weights
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Geometric interpretation: ridge functions
Single output:

u1

um

z1

zr

zk=gk(v
T
ku)

y...
...

y=z1+...+zr

Hidden layerInput
layer

Output
layer

f(u) = g1(v
T
1u) + · · ·+ gr(v

T
r u)
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Independent component analysis (source separation)

Linear mixing model:
x = V s

x =

[ x1

...
xm

]
︸ ︷︷ ︸

sensors

∈ Rn, V =
[
v1 · · · vr

]︸ ︷︷ ︸
mixing matrix

, s =

[ s1
...
sr

]
︸ ︷︷ ︸

sources

∈ Rr

if sk are independent, the 2nd characteristic function has expansion

Ψx(u) = ψs1(v
T
1u) + · · ·+ ψsr (v

T
r u)

See [Comon, Jutten, 2010], [Rajih, Comon, 2006]
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Compact matrix notation

u1

um

z1

zr

zk=gk(v
T
ku)

y1

yn

...
...

...

yk=Wz

rewrite as f(u) = Wg(VTu)

with
▶ V =

[
v1 · · · vr

]
∈ Rm×r

▶ g(t1, · · · , tr) = [g1(t1) · · · gr(tr)]T

“Block-structured” form:

u1

...

um

f(u1, . . . , um)

y1
...
yn
→

u1

...

um

VT

t=VTu

g1(t1)
t1

...

gr(tr)
tr

W

y=Wz

z1

zr

y1
...

yn
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Nonlinear dynamical system identification
Identification of Parallel Wiener-Hammerstein systems

LTI

LTI

SNL

LTI

LTI

+
u y ≈

LTI

LTI

SNL

SNL

LTI

LTI

... +
u y

; reduced to approximation of a multivariate map:

u1

...

um

f(u1, . . . , um)

y1
...
yn

≈
u1

...

um

VT

t=VTu

g1(t1)
t1

...

gr(tr)
tr

W

y=Wz

z1

zr

y1
...

yn

▶ called decoupling in system identification literature

▶ applicable to other block structures
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Exact factorization (decoupling)

Goal: Given f , decompose it as f(u) = Wg(VTu)

u1

...

um

f(u1, . . . , um)

y1
...
yn

→
u1

...

um

VT

g1(t1)
t1

...

gr(tr)
tr

W

z1

zr

y1
...

yn

with V ∈ Rm×r, W ∈ Rn×r, g(t1, · · · , tr) = [g1(t1) · · · gr(tr)]T

Key idea of [Dreesen et al, 2015]: Jacobian of f has form

Jf (u) = W

[
g′
1(v

T
1u)

. . .

g′
r(v

T
ru)

]
VT

only diagonal term depends on u
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Exact factorization: CPD of Jacobian tensor
Algorithm.

1. Evaluate Jf (u) at N “operating points” u1, . . . ,uN ∈ Rm

2. Stack them into a tensor:

=J
J(u1)
J(u2)

J(uN )

. .
.

m

n

N

3. Joint matrix diagonalization ↔ CPD J = [[W,V,H]]

J(u(1))=WD(1)VT,

...
J(u(N))=WD(N)VT

←→ J = + · · · +
w1

v1

h1

wr

vr

hr

4. Retrieve vk, wk from factors W,V of the CPD

5. hk contains evaluations of g′k
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Factorization and exact CPD

f(u) = Wg(VTu)⇒ J = + · · · +
w1

v1

h1

wr

vr

hr

where (hk)i = g′k(v
T
kui)

An example of recovery:
(exact decomposition,
m = n = 2, r = 2)

36 Shortcomings in the noiseless case

−10 0 10
−0.8

0

0.1

h1

h2

v
T
i u

h
i

Figure 3.3: In the noiseless case, when assuming an exact decompo-

sition exists, the third factor H of the CPD of J yields exactly the

derivatives of g1, . . . , gr, when plotting the columns of H with respect

to the internal variables vT
1 u, . . . ,vT

r u. The third factor H of the CP

decomposition behaves differently under the influence of noise or with

too large values of r (Figures 3.4 and 3.5).

thanks to uniqueness of CPD of J

Issues:

▶ CPD is a relaxation: structure of H is lost

▶ need extra step to estimate gk
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Polynomial case

Decompose polynomial map f : Rm → Rn (degree d) as

f(u) = w1g1(v
T
1u) + · · ·+wrgr(v

T
r u), (1)

with vk ∈ Rm,wk ∈ Rn, gk(t) = c1,kt+ c2,kt
2 + · · ·+ cd,kt

d

[Comon, Qi, U., 2015], [U., Dreesen, Ishteva, 2020]: (1) is equivalent to
a coupled tensor decomposition

T 1 = JW,V, cT1 K,
T 2 = JW,V,V, cT2 K,

...
T d = JW,V, . . . ,V︸ ︷︷ ︸

d times

, cTd K,

Useful for studying uniqueness [Comon, Qi, U., 2017] (X-rank theory)
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Generic uniqueness of the factorization

f(u) = w1g1(v
T
1u)+ · · ·+wrgr(v

T
r u), gk(t) = c1,kt+c2,kt

2+ · · ·+cd,ktd

Theorem ([Comon, Qi, U., 2017], simplified)

Let s, 1 ≤ s ≤ d, and r be such that

r ≤ min

((
m+ s− 1

s

)
, C(m,n, d)

)
n.

Then for a general r-term f(u), we can recover uniquely (up to scaling
ambiguities) wk, vk and cj,k, j ≥ s

Examples:

▶ overall identifiability: r ≤ nm
▶ nonlinear terms can be identifiable for r ≤ nm(m+1)

2
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Tensor approximations for NN compression/learning

1. (Lebedev et al., 2015)

Compress convolutional layer tensors (W is sparse and structured).

2. (Novikov et al., 2016), Compression of fully-connected layers (e.g.
tensorization of large matrix W +TT approximation)

3. (Cohen et al., 2016): replace the nonlinear transfromation
g(WTx+ b) with product pooling unit
→ (Khrulkov et al, 2018) link with tensor formats (TT, HT, ...)

4. (Janzamin, et al. 2016): learning the linear layer W from tensor
approximation of the score function
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Framework: neural network compression
Goal: compress a part of a neural network:

→

with the flexible model: f(u) ≈Wg(VTu)

▶ pretrained network ⇒ can evaluate derivatives

▶ use Jacobian tensor CP approximation
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Drawbacks of the Jacobian approach

min
wk,vk,hk

∥∥∥J − JW,V,HK
∥∥∥
F
, where J:,:,i = Jf (ui)

Issues:

▶ Need to estimate activation functions + loss of uniqueness
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▶ derivatives are approximated instead of function values
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Idea: add constraints
Activation function from a parameterized basis:

gl(t) = c0,l + c1,lϕ1(t) + · · ·+ cd,lϕd(t).
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Proposed approach: coupled tensor-matrix factorization

For a base gl(t) = c0,l + c1,lϕ1(t) + · · ·+ cd,lϕd(t), we solve

min
wk,vk,hk,zk

∥∥∥J − [|W,V,H|]
∥∥∥2︸ ︷︷ ︸

Jacobian

+λ ·
∥∥∥F−WZT

∥∥∥2︸ ︷︷ ︸
function evaluation (data fidelity)

subject to hl = Xl · cl, zl = Yl · cl, with

Xl =

[
0 ϕ′

1(v
T
l u

(1)) ··· ϕ′
d(v

T
l u

(1))

...
...

...
0 ϕ′

1(v
T
l u

(N)) ··· ϕ′
d(v

T
l u

(N))

]
, Yl =

[
1 ϕ1(v

T
l u

(1)) ··· ϕd(v
T
l u

(1))

...
...

...
1 ϕ1(v

T
l u

(N)) ··· ϕd(v
T
l u

(N))

]
.

▶ constraints to preserve the structure

▶ data fidelity term to approximate well the predictions
⇒ avoid fine-tuning
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Test of compression

ICDAR 2003 dataset:
≈163000 train, ≈ 5300 test,
36 classes

CharNet
[Jaderberg et al., 2014]

compress the conv3 layer (viewed as fully connected layer R4096 → R128)
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CMTF compression performance
▶ use only 360 operating points ui (10 per class from training set)
▶ no fine-tuning and 4x compression

min
wk,vk,hk,zk

∥∥∥J − [|W,V,H|]
∥∥∥2︸ ︷︷ ︸

Jacobian

+λ ·
∥∥∥F−WZT

∥∥∥2︸ ︷︷ ︸
function evaluation

subject to constraints on H and Z
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Nonlinear dynamical system identification
Identification of Parallel Wiener-Hammerstein systems

LTI

LTI

SNL

LTI

LTI

+
u y

LTI

LTI

SNL

SNL

LTI

LTI

... +
u y

; reduced to approximation of a multivariate map: f(u) ≈Wg(VTu)

u1

...

um

f(u1, . . . , um)

y1
...
yn
→

u1

...

um

VT

t=VTu

g1(t1)
t1

...

gr(tr)
tr

W

y=Wz

z1

zr

y1
...

yn

▶ called decoupling in system identification literature

▶ applicable to other block structures
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Parallel Wiener-Hammerstein system identification
Goal: estimate

LTI

LTI

SNL

SNL

LTI

LTI

... +
u y

from input and output data u(t), v(t).

Current approaches are two-step: estimate first

LTI

LTI

SNL

LTI

LTI

+
u y

Can we identify PWH system directly?
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Parallel Wiener Hammerstein system: FIR case

a1(q)

...
ar(q)

g1(·)
...

gr(·)

b1(q)

...
br(q)

+
u(t) y(t)

Assumption:

▶ ak(q), bk(q) — finite impulse response (FIR) filters with lags L1, L2

▶ gk(·) are univariate (static) functions

y =

r∑
k=1

bk ∗ (gk(ak ∗ u))

where

▶ ak ∈ RL1 , bk ∈ RL2 — filter coefficients

▶ gk(·) applied elementwise to ak ∗ u (filtered input)

convolutional NN with flexible activation functions
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Our setup: FIR and polynomial activations

a1(q)

...
ar(q)

g1(·)
...

gr(·)

b1(q)

...
br(q)

+
u(t) y(t)

1. ak, bk are FIR with lags L1 and L2

⇒ y depends on L = L1 + L2 − 1 past inputs:

y(t) = f(u(t), u(t− 1), . . . , u(t− L+ 1)),

2. gk — polynomial of degree d
⇒ f is a multivariate polynomial in (u(t), u(t− 1), . . . , u(t− L+ 1))

identification from truncated Volterra kernels up to order d
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Apply plain decoupling to parallel Wiener-Hammerstein

[Dreesen, Ishteva, 2021]:

Drawbacks:

▶ Inflates tensor rank (rL1 branches)

▶ Structured factors (similar to [Kibangou, Favier, 2010])

Our approach: use tensor recovery
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Low-rank tensor recovery

▶ Low-rank tensor completion from few elements

?

?

?
= [[A,B,C]]

▶ Tensor recovery: reconstruct a low-rank T = [[A,B,C]]
from M samples (projections) P(T ):

P(T ) =
[
⟨T ,S1⟩F · · · ⟨T ,SM ⟩F

]T
— linear sampling (projection) operator
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Key ideas of our approach
We mimick the CPD Jacobian method of [Dreesen et al. 2015], but

1. take operating points µk, k = 1, . . . , N with Vandermonde structure:

uµ =
[
1 µ µ2 . . . µL−1

]T
, µ ∈ C

2. split the nonlinearity into homogeneous parts:

f(u) = f (0) + f (1)(u) + · · ·+ f (d)(u)

3. where gradient of f (s) — partial contraction of s-th Volterra kernel:

∇f (s)(u) = s ·H(s) •2 u · · · •s u.

4. stack the gradients into a “measurement” vector

zk =
[
(∇f (1)(uµk

))T (∇f (2)(uµk
))T · · · (∇f (2)(uµk

))T
]

5. z = (z1, . . . , zN ) must be a sampling of a low-rank tensor
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Main result

a1(q)

...
ar(q)

g1(·)
...

gr(·)

b1(q)

...
br(q)

+
u(t) y(t)

Proposition [U., Dreesen, Ishteva, 2021]
z is a projection of a rank-r polyadic decomposition

z = P(T ), T =

r∑
ℓ=1

aℓ ⊗ bℓ ⊗ hℓ︸ ︷︷ ︸
[[A,B,H]]

,

aℓ ∈ RL1 , bℓ ∈ RL2 , coefficients of gℓ can be recovered from hℓ

parallel Wiener-Hammerstein system — rank-r tensor recovery
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Example

r = 2 branches, filter lengths L1 = 3, L2 = 3 with coefficients:

A =

 0.3 0.6
−0.4 0.2
0.1 0.3

 , B =

0.3 0.2
0.2 0.3
0.1 0.01

 ,
and nonlinearities g1(x1) = 3x31 − x21 + 5, g2(x2) = −5x32 + 3x2 − 7.

Correct recovery with 30 random µ on the unit circle:

Â =

 1 1
−1.3333− i0.8305 · 10−8 0.3333 + i0.4203 · 10−9

0.3333− i0.2210 · 10−8 0.4999 + i0.7007 · 10−10

 ,
h1(t) = t2 − 0.2222t, h2(t) = t2 − 0.2.
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Tensor recovery

For z ∈ CM , rank r, and sampling operator P : CL1×L2×L3 → CM find

min
A∈CL1×r,B∈CL2×r,H∈CL3×r

∥P([[A,B,H]])− z∥22,

Algorithm (alternating least squares).
Input: initializations A0, B0, H0.

1. For k=1,2,.... until a stopping criterion is satisfied

2. Ak ← argminA ∥P([[A,Bk−1,Hk−1]])− z∥22;
3. Bk ← argminB ∥P([[Ak,B,Hk−1]])− z∥22;
4. Hk ← argminH ∥P([[Ak,Bk,H]])− z∥22.
5. End for
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Dependence on intialization

Convergence for 10 initializations (prev. example):

0 50 100 150 200 250
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Residual, different realizations
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Open questions and references

Ongoing work:

▶ deeper architectures with flexible activation functions: identifiability
and algorithms

▶ optimization (better/scalable algorithms, convergence)

▶ robustness to perturbations, stability (link with uniqueness)

▶ link with other tensor approximation methods for NN compression
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Thank you!

And all my collaborators:

▶ Jacobians (CPD-based methods):
K. U., P. Dreesen and M. Ishteva., Decoupling multivariate polynomials:

interconnections between tensorizations, JCAM, 2020.

▶ Generic uniqueness (X-rank):
P. Comon, Y. Qi and K. U., X-rank and identifiability for a polynomial

decomposition model, SIAGA, 2017.

▶ NN compression/ CMTF:
Y.Zniyed, K. U., S. Miron, D. Brie, Tensor-based framework for training

flexible neural networks, 2021, arXiv:2106.13542 .

▶ Tensor recovery for convolutional case:
K. U., P. Dreesen, M. Ishteva, Low-rank tensor recovery for

Jacobian-based Volterra identificationof parallel Wiener-Hammerstein

systems, proceedings of SYSID 2021, arXiv:2109.09584 .
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