Neural networks, flexible activation functions, and tensor approximations joint work with Y. Qi, P. Comon, P. Dreesen, M. Ishteva, Y. Zniyed, S. Miron, D. Brie

Konstantin Usevich, CNRS (CRAN, Nancy)

23.11.2022, Workshop on Tensor Theory and Methods, Paris

Flexible activations

Link to CPD

Coupled matrix/tensor factorization

Low-rank tensor recovery

Flexible activations

Link to CPD

Coupled matrix/tensor factorization

Low-rank tensor recovery

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Feed-forward neural networks

- Huge success in computer vision [Krizhevsky et al., 2014]
- Very popular in data science, signal processing, engineering
- ▶ Basic problem supervised classification: Given a *training set* of objects $\mathbf{x}^{(k)} \in \mathbb{R}^m$ and (discrete) labels y_k , find ("learn") the map f such that $f(\mathbf{x}^{(k)}) \approx y_k$, which generalizes well: $(f(\mathbf{x}_{test}) \approx y_{test}$ on unseen *test* data)

 Flexible activations
 Link to CPD
 Coupled matrix/tensor factorization
 Low-rank tensor recovery

Neural networks: early ideas

Perceptron and activation functions

Main issues:

- level sets are hyperplanes
- classifier only for linearly separable classes

Modern feed-forward neural networks

Some key features:

- Stacking several layers: lots of layers (deep learning) → better performance
- Shift to other activation functions, e.g. ReLu:

Structured weights (e.g., convolutional)

Clever optimization algorithms, parallel computations on GPUs

Multilayer perceptron

v_{1,k}, v_{2,k} — vectors of weights, b_{1,k}, b_{2,k} — biases
 g, φ — univariate activation functions

Theorem (Universal Approximation Theorem, e.g., (Pinkus, 1997))

Any continuous $\mathbf{f} : \Omega \to \mathbb{R}^n$ on compact Ω can be approximated to arbitrary accuracy by a multilayer perceptron \mathbf{f}_{θ} (with $\phi(t) = t$ and non-polynomial continuous g).

Can we add flexibility to g to achieve more compact representation?

From fixed to flexible activations

Simplest 2-layer model: no activation/bias at output

• fixed activations (classic setup): $g_k(t) = g(t + b_k)$

• flexible activations: different (ideally learned) g_k

Related work

Neural network/approximation literature:

- deep spline networks [Aziznejad, Unser, 2019]
- ridge approximations [Lin, Pinkus, 1993]

Other work:

- independent component analysis [Comon, Jutten, 2010]
- block-structured nonlinear system identification [Dreesen et al., 2015]

Decomposition/approximation problem

Given a multivariate map $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^n$, decompose (approximate) it as

$$\mathbf{f}(\mathbf{u}) = \underbrace{\mathbf{w}_1 g_1(\mathbf{v}_1^\mathsf{T} \mathbf{u})}_{\text{single node (branch)}} + \dots + \mathbf{w}_r g_r(\mathbf{v}_r^\mathsf{T} \mathbf{u}),$$

where

Flexible activations

v_k ∈ ℝ^m, g_k — different univariate functions
 W = [**w**₁ ··· w_r] ∈ ℝ^{n×r} — output weights

 Flexible activations
 Link to CPD
 Coupled matrix/tensor factorization
 Low-rank tensor recovery

Geometric interpretation: ridge functions

Single output:

$$f(\mathbf{u}) = g_1(\mathbf{v}_1^\mathsf{T}\mathbf{u}) + \dots + g_r(\mathbf{v}_r^\mathsf{T}\mathbf{u})$$

sum of "plane waves" or ridge functions [Lin, Pinkus, 1993]

 Flexible activations
 Link to CPD
 Coupled matrix/tensor factorization
 Low-rank tensor recovery

Independent component analysis (source separation)

if s_k are **independent**, the 2nd characteristic function has expansion

$$\Psi_{\mathbf{x}}(\mathbf{u}) = \psi_{s_1}(\mathbf{v}_1^\mathsf{T}\mathbf{u}) + \dots + \psi_{s_r}(\mathbf{v}_r^\mathsf{T}\mathbf{u})$$

See [Comon, Jutten, 2010], [Rajih, Comon, 2006]

Compact matrix notation

rewrite as with

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_r \end{bmatrix} \in \mathbb{R}^{m \times r}$$
$$\mathbf{g}(t_1, \cdots, t_r) = \begin{bmatrix} g_1(t_1) \cdots g_r(t_r) \end{bmatrix}^\mathsf{T}$$

"Block-structured" form:

 Flexible activations
 Link to CPD
 Coupled matrix/tensor factorization
 Low-rank tensor recovery

Nonlinear dynamical system identification

Identification of Parallel Wiener-Hammerstein systems

 \rightsquigarrow reduced to approximation of a multivariate map:

called *decoupling* in system identification literature

applicable to other block structures

Flexible activations

Link to CPD

Coupled matrix/tensor factorization

Low-rank tensor recovery

Exact factorization (decoupling)

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Goal: Given \mathbf{f} , decompose it as $\mathbf{f}(\mathbf{u}) = \mathbf{W} \mathbf{g}(\mathbf{V}^\mathsf{T} \mathbf{u})$

with $\mathbf{V} \in \mathbb{R}^{m \times r}$, $\mathbf{W} \in \mathbb{R}^{n \times r}$, $\mathbf{g}(t_1, \cdots, t_r) = [g_1(t_1) \cdots g_r(t_r)]^\mathsf{T}$

Key idea of [Dreesen et al, 2015]: Jacobian of ${\bf f}$ has form

$$\mathbf{J_f}(\mathbf{u}) = \mathbf{W} \begin{bmatrix} g_1'(\mathbf{v}_1^\mathsf{T}\mathbf{u}) & & \\ & \ddots & \\ & & g_r'(\mathbf{v}_r^\mathsf{T}\mathbf{u}) \end{bmatrix} \mathbf{V}^\mathsf{T}$$

only diagonal term depends on ${\bf u}$

00000

Exact factorization: CPD of Jacobian tensor Algorithm.

1. Evaluate $\mathbf{J}_{\mathbf{f}}(\mathbf{u})$ at N "operating points" $\mathbf{u}_1,\ldots,\mathbf{u}_N\in\mathbb{R}^m$

3. Joint matrix diagonalization \leftrightarrow CPD $\boldsymbol{\mathcal{J}} = [\![\mathbf{W}, \mathbf{V}, \mathbf{H}]\!]$

$$\begin{array}{ccc} \mathbf{J}(\mathbf{u}^{(1)}) = \mathbf{W} \mathbf{D}^{(1)} \mathbf{V}^{\mathsf{T}}, & & & & & \\ \vdots & & & & & \\ \mathbf{J}(\mathbf{u}^{(N)}) = \mathbf{W} \mathbf{D}^{(N)} \mathbf{V}^{\mathsf{T}} & & & & & & & \\ \end{array} \xrightarrow{\mathbf{h}_1} = \mathbf{h}_1 / \mathbf{v}_1 & & & & & \\ \mathbf{w}_1 / \mathbf{v}_1 & & & & & \\ \mathbf{w}_r / \mathbf{v}_r & & & & \\ \end{array}$$

- 4. Retrieve \mathbf{v}_k , \mathbf{w}_k from factors \mathbf{W}, \mathbf{V} of the CPD
- 5. \mathbf{h}_k contains evaluations of g'_k

Link to CPD

Factorization and exact CPD

$$\mathbf{f}(\mathbf{u}) = \mathbf{W}\mathbf{g}(\mathbf{V}^{\mathsf{T}}\mathbf{u}) \Rightarrow \overbrace{\mathcal{J}}^{\mathsf{T}} = \mathbf{w}_1 \begin{vmatrix} \mathbf{v}_1 \\ \mathbf{w}_1 \end{vmatrix}^{\mathsf{T}} + \cdots + \mathbf{w}_r \begin{vmatrix} \mathbf{v}_r \\ \mathbf{v}_r \end{vmatrix}$$

where $(\mathbf{h}_k)_i = g'_k(\mathbf{v}_k^\mathsf{T}\mathbf{u}_i)$

An example of recovery: (exact decomposition, m = n = 2, r = 2)

thanks to uniqueness of CPD of ${\mathcal J}$

Link to CPD

Issues:

CPD is a relaxation: structure of H is lost

need extra step to estimate g_k

Polynomial case

Decompose polynomial map $\mathbf{f} \colon \mathbb{R}^m \to \mathbb{R}^n$ (degree d) as

Flexible activations Link to CPD

000000

$$\mathbf{f}(\mathbf{u}) = \mathbf{w}_1 g_1(\mathbf{v}_1^\mathsf{T} \mathbf{u}) + \dots + \mathbf{w}_r g_r(\mathbf{v}_r^\mathsf{T} \mathbf{u}), \tag{1}$$

with $\mathbf{v}_k \in \mathbb{R}^m, \mathbf{w}_k \in \mathbb{R}^n$, $g_k(t) = c_{1,k}t + c_{2,k}t^2 + \dots + c_{d,k}t^d$

[Comon, Qi, U., 2015], [U., Dreesen, Ishteva, 2020]: (1) is equivalent to a coupled tensor decomposition

$$\begin{aligned} \mathcal{T}^1 &= [\![\mathbf{W},\mathbf{V},\mathbf{c}_1^{\mathsf{T}}]\!], \\ \mathcal{T}^2 &= [\![\mathbf{W},\mathbf{V},\mathbf{V},\mathbf{c}_2^{\mathsf{T}}]\!], \\ &\vdots \\ \mathcal{T}^d &= [\![\mathbf{W},\underbrace{\mathbf{V},\ldots,\mathbf{V}}_{d \text{ times}},\mathbf{c}_d^{\mathsf{T}}]\!], \end{aligned}$$

Useful for studying uniqueness [Comon, Qi, U., 2017] (X-rank theory)

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

$$\mathbf{f}(\mathbf{u}) = \mathbf{w}_1 g_1(\mathbf{v}_1^\mathsf{T} \mathbf{u}) + \dots + \mathbf{w}_r g_r(\mathbf{v}_r^\mathsf{T} \mathbf{u}), \ g_k(t) = \frac{c_{1,k}t}{c_{2,k}t} + c_{2,k}t^2 + \dots + c_{d,k}t^d$$

Theorem ([Comon, Qi, U., 2017], simplified) Let s, $1 \le s \le d$, and r be such that

$$r \le \min\left(\binom{m+s-1}{s}, C(m, n, d)\right)n.$$

Then for a general *r*-term $\mathbf{f}(\mathbf{u})$, we can recover uniquely (up to scaling ambiguities) \mathbf{w}_k , \mathbf{v}_k and $c_{j,k}$, $j \ge s$

Examples:

▶ overall identifiability: $r \leq nm$

▶ nonlinear terms can be identifiable for $r \le n \frac{m(m+1)}{2}$

Flexible activations

Link to CPD

Coupled matrix/tensor factorization

Low-rank tensor recovery

Tensor approximations for NN compression/learning

- 1. (Lebedev et al., 2015) Compress convolutional layer tensors (W is sparse and structured).
- 2. (Novikov et al., 2016), Compression of fully-connected layers (e.g. tensorization of large matrix \mathbf{W} +TT approximation)
- 3. (Cohen et al., 2016): replace the nonlinear transformation $g(\mathbf{W}^{\mathsf{T}}\mathbf{x} + \mathbf{b})$ with product pooling unit \rightarrow (Khrulkov et al, 2018) link with tensor formats (TT, HT, ...)
- 4. (Janzamin, et al. 2016): learning the linear layer W from tensor approximation of the score function

Framework: neural network compression

Goal: compress a part of a neural network:

with the flexible model: $\mathbf{f}(\mathbf{u}) \approx \mathbf{W} \mathbf{g}(\mathbf{V}^\mathsf{T} \mathbf{u})$

- pretrained network \Rightarrow can evaluate derivatives
- use Jacobian tensor CP approximation

Drawbacks of the Jacobian approach

Coupled matrix/tensor factorization Low-rank tensor recovery

$$\min_{\mathbf{w}_k, \mathbf{v}_k, \mathbf{h}_k} \left\| \mathcal{J} - \llbracket \mathbf{W}, \mathbf{V}, \mathbf{H}
rbracket
ight\|_F, \quad ext{where} \quad \mathcal{J}_{:,:,i} = \mathbf{J}_{\mathbf{f}}(\mathbf{u}_i)$$

Issues:

Need to estimate activation functions + loss of uniqueness

derivatives are approximated instead of function values

Low-rank tensor recovery

Idea: add constraints

Activation function from a parameterized basis:

$$g_l(t) = c_{0,l} + c_{1,l}\phi_1(t) + \dots + c_{d,l}\phi_d(t).$$

Proposed approach: coupled tensor-matrix factorization

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

For a base $g_l(t) = c_{0,l} + c_{1,l}\phi_1(t) + \dots + c_{d,l}\phi_d(t)$, we solve

$$\begin{split} \min_{\mathbf{w}_{k},\mathbf{v}_{k},\mathbf{h}_{k},\mathbf{z}_{k}} \underbrace{\left\| \mathcal{J} - [|\mathbf{W},\mathbf{V},\mathbf{H}|] \right\|^{2}}_{\text{Jacobian}} + \lambda \cdot \underbrace{\left\| \mathbf{F} - \mathbf{W}\mathbf{Z}^{\mathsf{T}} \right\|^{2}}_{\text{function evaluation (data fidelity)}} \\ \text{subject to} \quad \mathbf{h}_{l} = \mathbf{X}_{l} \cdot \mathbf{c}_{l}, \quad \mathbf{z}_{l} = \mathbf{Y}_{l} \cdot \mathbf{c}_{l}, \quad \text{with} \\ \mathbf{X}_{l} = \begin{bmatrix} 0 \ \phi_{1}^{\prime}(\mathbf{v}_{l}^{\mathsf{T}}\mathbf{u}^{(1)}) \cdots \ \phi_{d}^{\prime}(\mathbf{v}_{l}^{\mathsf{T}}\mathbf{u}^{(1)}) \\ \vdots & \vdots & \vdots \\ 0 \ \phi_{1}^{\prime}(\mathbf{v}_{l}^{\mathsf{T}}\mathbf{u}^{(N)}) \cdots \ \phi_{d}^{\prime}(\mathbf{v}_{l}^{\mathsf{T}}\mathbf{u}^{(N)}) \end{bmatrix}, \quad \mathbf{Y}_{l} = \begin{bmatrix} 1 \ \phi_{1}(\mathbf{v}_{l}^{\mathsf{T}}\mathbf{u}^{(1)}) \cdots \ \phi_{d}(\mathbf{v}_{l}^{\mathsf{T}}\mathbf{u}^{(1)}) \\ \vdots & \vdots & \vdots \\ 1 \ \phi_{1}(\mathbf{v}_{l}^{\mathsf{T}}\mathbf{u}^{(N)}) \cdots \ \phi_{d}(\mathbf{v}_{l}^{\mathsf{T}}\mathbf{u}^{(N)}) \end{bmatrix}. \end{split}$$

- constraints to preserve the structure
- data fidelity term to approximate well the predictions
 avoid fine-tuning

Test of compression

Coupled matrix/tensor factorization

ICDAR 2003 dataset: \approx 163000 train, \approx 5300 test, 36 classes

compress the conv3 layer (viewed as fully connected layer $\mathbb{R}^{4096} \to \mathbb{R}^{128}$) 24/39

CMTF compression performance

Coupled matrix/tensor factorization Low-rank tensor recovery

use only 360 operating points u_i (10 per class from training set)
 no fine-tuning and 4x compression

25 / 39

Flexible activations

Link to CPD

Coupled matrix/tensor factorization

Low-rank tensor recovery

 Flexible activations
 Link to CPD
 Coupled matrix/tensor factorization
 Low-rank tensor recovery

Nonlinear dynamical system identification

Identification of Parallel Wiener-Hammerstein systems

 \leadsto reduced to approximation of a multivariate map: $\mathbf{f}(\mathbf{u})\approx\mathbf{W}\mathbf{g}(\mathbf{V}^\mathsf{T}\mathbf{u})$

called decoupling in system identification literature

applicable to other block structures

Parallel Wiener-Hammerstein system identification Goal: estimate

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

from input and output data u(t), v(t).

Current approaches are two-step: estimate first

Can we identify PWH system directly?

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Parallel Wiener Hammerstein system: FIR case

$$\begin{array}{c} u(t) & a_1(q) & g_1(\cdot) & b_1(q) \\ \vdots & \vdots & \vdots \\ a_r(q) & g_r(\cdot) & b_r(q) \end{array} \xrightarrow{} y(t)$$

Assumption:

▶ $a_k(q)$, $b_k(q)$ — finite impulse response (FIR) filters with lags L_1, L_2

• $g_k(\cdot)$ are univariate (static) functions

$$\mathbf{y} = \sum_{k=1}^{r} \mathbf{b}_k * (g_k(\mathbf{a}_k * \mathbf{u}))$$

where

▶
$$\mathbf{a}_k \in \mathbb{R}^{L_1}$$
, $\mathbf{b}_k \in \mathbb{R}^{L_2}$ — filter coefficients

• $g_k(\cdot)$ applied elementwise to $\mathbf{a}_k * \mathbf{u}$ (filtered input)

convolutional NN with flexible activation functions

 Flexible activations
 Link to CPD
 Coupled matrix/tensor factorization
 Low-rank tensor recovery

Our setup: FIR and polynomial activations

$$\begin{array}{c} u(t) \\ \vdots \\ a_r(q) \\ g_r(\cdot) \\ b_r(q) \\ b_r(q) \end{array} \xrightarrow{g_1(\cdot)} y(t) \\ g_r(\cdot) \\ b_r(q) \\ b_r($$

1. a_k , b_k are FIR with lags L_1 and L_2 $\Rightarrow y$ depends on $L = L_1 + L_2 - 1$ past inputs:

$$y(t) = f(u(t), u(t-1), \dots, u(t - L + 1)),$$

2. g_k — polynomial of degree d $\Rightarrow f$ is a multivariate polynomial in $(u(t), u(t-1), \dots, u(t-L+1))$

identification from truncated Volterra kernels up to order d

Apply plain decoupling to parallel Wiener-Hammerstein

[Dreesen, Ishteva, 2021]:

Drawbacks:

- Inflates tensor rank $(rL_1 \text{ branches})$
- Structured factors (similar to [Kibangou, Favier, 2010])

Our approach: use tensor recovery

Low-rank tensor recovery

Low-rank tensor completion from few elements

► Tensor recovery: reconstruct a low-rank T = [A, B, C] from M samples (projections) 𝒫(T):

$$\mathscr{P}(\mathcal{T}) = \begin{bmatrix} \langle \mathcal{T}, \mathcal{S}_1 \rangle_F & \cdots & \langle \mathcal{T}, \mathcal{S}_M \rangle_F \end{bmatrix}^{\mathsf{T}}$$

- linear sampling (projection) operator

Key ideas of our approach

Coupled matrix/tensor factorization Low-rank tensor recovery

We mimick the CPD Jacobian method of [Dreesen et al. 2015], but

1. take operating points $\mu_k, k = 1, \ldots, N$ with Vandermonde structure:

$$\mathbf{u}_{\mu} = \begin{bmatrix} 1 & \mu & \mu^2 & \dots & \mu^{L-1} \end{bmatrix}^{\mathsf{T}}, \quad \mu \in \mathbb{C}$$

2. split the nonlinearity into homogeneous parts:

$$f(\mathbf{u}) = f^{(0)} + f^{(1)}(\mathbf{u}) + \dots + f^{(d)}(\mathbf{u})$$

3. where gradient of $f^{(s)}$ — partial contraction of s-th Volterra kernel:

$$\nabla f^{(s)}(\mathbf{u}) = s \cdot \mathcal{H}^{(s)} \bullet_2 \mathbf{u} \cdots \bullet_s \mathbf{u}.$$

4. stack the gradients into a "measurement" vector

$$\mathbf{z}_{k} = \begin{bmatrix} (\nabla f^{(1)}(\mathbf{u}_{\mu_{k}}))^{\mathsf{T}} & (\nabla f^{(2)}(\mathbf{u}_{\mu_{k}}))^{\mathsf{T}} & \cdots & (\nabla f^{(2)}(\mathbf{u}_{\mu_{k}}))^{\mathsf{T}} \end{bmatrix}$$

5. $\mathbf{z} = (\mathbf{z}_1, \dots, \mathbf{z}_N)$ must be a sampling of a low-rank tensor

Main result

$$\begin{array}{c} u(t) \\ \vdots \\ a_r(q) \\ \end{array} \begin{array}{c} g_1(\cdot) \\ b_1(q) \\ \vdots \\ g_r(\cdot) \\ \end{array} \begin{array}{c} y(t) \\ b_r(q) \\ \end{array}$$

Proposition [U., Dreesen, Ishteva, 2021] z is a projection of a rank-r polyadic decomposition

$$\mathbf{z} = \mathscr{P}(\mathcal{T}), \quad \mathcal{T} = \underbrace{\sum_{\ell=1}^{r} \mathbf{a}_{\ell} \otimes \mathbf{b}_{\ell} \otimes \mathbf{h}_{\ell}}_{\llbracket \mathbf{A}, \mathbf{B}, \mathbf{H}
rbracket}$$

 $\mathbf{a}_\ell \in \mathbb{R}^{L_1}$, $\mathbf{b}_\ell \in \mathbb{R}^{L_2}$, coefficients of g_ℓ can be recovered from \mathbf{h}_ℓ

parallel Wiener-Hammerstein system — rank-r tensor recovery

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

Example

r = 2 branches, filter lengths $L_1 = 3$, $L_2 = 3$ with coefficients:

$$\mathbf{A} = \begin{bmatrix} 0.3 & 0.6\\ -0.4 & 0.2\\ 0.1 & 0.3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0.3 & 0.2\\ 0.2 & 0.3\\ 0.1 & 0.01 \end{bmatrix},$$

and nonlinearities $g_1(x_1) = 3x_1^3 - x_1^2 + 5$, $g_2(x_2) = -5x_2^3 + 3x_2 - 7$.

Correct recovery with 30 random μ on the unit circle:

$$\widehat{\mathbf{A}} = \begin{bmatrix} 1 & 1 \\ -1.3333 - i0.8305 \cdot 10^{-8} & 0.3333 + i0.4203 \cdot 10^{-9} \\ 0.3333 - i0.2210 \cdot 10^{-8} & 0.4999 + i0.7007 \cdot 10^{-10} \end{bmatrix},$$
$$h_1(t) = t^2 - 0.2222t, \quad h_2(t) = t^2 - 0.2.$$

Flexible activations Link to CPD Coupled matrix/tensor factorization Low-rank tensor recovery

For $\mathbf{z} \in \mathbb{C}^M$, rank r, and sampling operator $\mathscr{P} : \mathbb{C}^{L_1 \times L_2 \times L_3} \to \mathbb{C}^M$ find

$$\min_{\mathbf{A}\in\mathbb{C}^{L_1\times r},\mathbf{B}\in\mathbb{C}^{L_2\times r},\mathbf{H}\in\mathbb{C}^{L_3\times r}}\|\mathscr{P}(\llbracket\mathbf{A},\mathbf{B},\mathbf{H}\rrbracket)-\mathbf{z}\|_2^2$$

Algorithm (alternating least squares). Input: initializations A_0 , B_0 , H_0 .

- 1. For k=1,2,.... until a stopping criterion is satisfied
- 2. $\mathbf{A}_k \leftarrow \arg\min_{\mathbf{A}} \| \mathscr{P}([\![\mathbf{A}, \mathbf{B}_{k-1}, \mathbf{H}_{k-1}]\!]) \mathbf{z} \|_2^2;$
- 3. $\mathbf{B}_k \leftarrow \arg\min_{\mathbf{B}} \| \mathscr{P}(\llbracket \mathbf{A}_k, \mathbf{B}, \mathbf{H}_{k-1} \rrbracket) \mathbf{z} \|_2^2;$
- 4. $\mathbf{H}_k \leftarrow \arg\min_{\mathbf{H}} \| \mathscr{P}(\llbracket \mathbf{A}_k, \mathbf{B}_k, \mathbf{H} \rrbracket) \mathbf{z} \|_2^2$.
- 5. End for

Dependence on intialization

Convergence for 10 initializations (prev. example):

Open questions and references

Ongoing work:

- deeper architectures with flexible activation functions: identifiability and algorithms
- optimization (better/scalable algorithms, convergence)
- robustness to perturbations, stability (link with uniqueness)
- link with other tensor approximation methods for NN compression

Thank you!

And all my collaborators:

Jacobians (CPD-based methods):

K. U., P. Dreesen and M. Ishteva., *Decoupling multivariate polynomials: interconnections between tensorizations*, JCAM, 2020.

Generic uniqueness (X-rank):
 P. Comon, Y. Qi and K. U., X-rank and identifiability for a polynomial decomposition model, SIAGA, 2017.

 NN compression/ CMTF: Y.Zniyed, K. U., S. Miron, D. Brie, *Tensor-based framework for training flexible neural networks*, 2021, arXiv:2106.13542.

Tensor recovery for convolutional case: K. U., P. Dreesen, M. Ishteva, Low-rank tensor recovery for Jacobian-based Volterra identificationof parallel Wiener-Hammerstein systems, proceedings of SYSID 2021, arXiv:2109.09584.