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Canonical polyadic decomposition

Definition: decomposition in minimal number of rank-1 terms [Harshman 1970; Carrol and
Chang 1970]
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Surprising fact: unique under mild conditions on number of terms and differences
between terms

Additional constraints such as orthogonality, triangularity, ... are not required, but may be imposed.
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Basic tool for data analysis

row vector ∼ excitation spectrum
column vector ∼ emission spectrum
coefficients ∼ concentrations
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[Smilde, Bro, et al. 2004]

Orthogonality (often) undesired!
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Existence of optimal CP approximation

Example:
T = a1 ⊗ b1 ⊗ c2 + a1 ⊗ b2 ⊗ c1 + a2 ⊗ b1 ⊗ c1 (Rank 3)

Tn = n(a1 + 1
na2) ⊗(b1 + 1

nb2) ⊗(c1 + 1
nc2) − na1 ⊗ b1 ⊗ c1 (Border rank 2)

n → ∞: terms become large, almost proportional, opposite sign
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[Kruskal 1983; De Silva and Lim 2008; Qi, Micha lek, et al. 2019] 5



Approximation problem ill-posed?

Matrices: the set {M ∈ RI×J | rank(M) ≤ R} is closed for all R.

Tensor: the set {T ∈ RI×J×K | rank(T ) ≤ R} is only closed for R = 1 and R = Rmax.

Consequence: CP is sometimes ill-posed

Degeneracy: terms → ∞ but partially cancel, fit improves

Rank 2 Rank 3

T0 T1
T2

Tb

Y

6



Engineering perspective

Example:
T = a1 ⊗ b1 ⊗ c2 + a1 ⊗ b2 ⊗ c1 + a2 ⊗ b1 ⊗ c1 (Rank 3)

Tn = n(a1 + 1
na2) ⊗(b1 + 1

nb2) ⊗(c1 + 1
nc2) − na1 ⊗ b1 ⊗ c1 (Border rank 2)

data tensor is not rank 2
↔ estimated tensor is rank 2

Mismatch between “data” and “model”

CPD: in practice often works well (but not always)
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Engineering perspective (2)
Example: EVD
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CPD and (G)EVD: (2 × 2 × 2) tensors

CPD: T =
R∑

r=1
ar ⊗ br ⊗ cr with R = 2

T =
c1

a1

b1 + · · · +

cR

aR

bR

Slices: T(:,:,1) =
[
a1 a2

] [c11
c12

] [
b1 b2

]T

T(:,:,2) =
[
a1 a2

] [c21
c22

] [
b1 b2

]T

EVD: T(:,:,1) · T−1
(:,:,2) =

[
a1 a2

] [c11/c21
c12/c22

] [
a1 a2

]−1

real-valued ↔ complex-valued eigenvalues 10



Existence of optimal CP approximation: (2 × 2 × 2) tensors

Boundary point 2 diverging components:(
1 0 0 1
0 1 0 0

)

EVD → Jordan cell: (
1 1
0 1

) (
λ 1
0 λ

)

(cf. GRAM)

[Kruskal 1983]
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Story for R × R × 2 tensors is completely told by generalized eigenvalues

The generalized eigenvalues and generalized eigenvectors of T are (essentially) equal
to the classical eigenvalues and eigenvectors of the matrix

T−1
2 T1

Theorem: T ∈ RR×R×2 has rank R IFF T has a basis of generalized eigenvectors.

Idea: use perturbation theory for generalized eigenvalues to guarantee perturbation has
distinct generalized eigenvalues.
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An existence bound for R × R × 2 tensors

Theorem
Let T and T̂ be tensors of size R × R × 2. Assume that T has R-rank R with CPD
JA, B, CK. If

∥T − T̂ ∥sp <
σmin(A)σmin(B) mini ̸=j χ(Ci , Cj)

2 ,

then T̂ has R-rank R and

md[T , T̂ ] <
∥T − T̂ ∥sp

σmin(A)σmin(B) .

Not limited to infinitesimal perturbations!
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A multiple pencil based bound for existence
Theorem
Let M ∈ RR×R×K be any tensor. For each i = 1, . . . , ⌊K/2⌋, let ϵi ≥ 0 be the bound
computed using the K = 2 theorem for the pencil (M2i−1, M2i ) and set
ϵ = ||(ϵ1, . . . , ϵ⌊K/2⌋)||2. If there exists some R-rank R tensor T ′ such that

∥M − T ′∥F < ϵ,

then M has a best R-rank R approximation and any best R-rank R approximation of
M has a unique CPD.

Note: more pencils → relaxed bound

T0 T1
T2

Tb

M?

M?

< ϵ?
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A multiple pencil based bound for existence (improved version)

Theorem
Let M ∈ RR×R×K be any tensor. Let U ∈ KK×K be a unitary matrix and set
S = M ·3 U. For each i = 1, . . . , ⌊K/2⌋, let ϵi ≥ 0 the bound computed using the
K = 2 theorem for the pencil

(S2i−1, S2i )

and set ϵ = ||(ϵ1, . . . , ϵ⌊K/2⌋)||2. If there exists some R-rank R tensor T ′ such that

∥M − T ′∥F < ϵ,

then M has a best R-rank R approximation and any best R-rank R approximation of
M has a unique CPD.
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SNR at which tensors of various sizes are guaranteed (in experiments) to have a best
rank R approximation
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Proportion of I × I × I tensors T + N with truncated MLSVD guaranteed to have a
best rank R approximation.
Confirms engineering practice!
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Algorithm basics: CPD
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CPD of a 9 × 9 × 9 × 9 × 9 tensor of rank 11

init: EVD, random
global ↔ asymptotic
asymptotic convergence: linear - superlinear - quadratic
unconstrained decomposition ↔ numerical challenges
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Pencil-based computation: numerical implication

CPD: T =
c1

a1

b1 +

c2

a2

b2 + · · · +

cR

aR

bR

(G)EVD: T(:,:,1) · T−1
(:,:,2) =

[
a1 a2 · · · aR

] 
c11/c21

c12/c22 . . .
c1R/c2R

 [a1 a2 · · · aR
]−1

Algebraically equivalent but computational differences
init optimization algorithm
quantization noise → condition number [Beltrán, Breiding, et al. 2019]

CPD structure is collapsed into matrix pencil
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Small eigenvalue gaps lead to inaccuracy

Gen. eigenvalues of (Tk , Tℓ) are interpreted as points on the unit circle. The pencil
(Tk , Tℓ) has R generalized eigenvalues.

     = generalized eigenvalue of              .

The small gap between generalized eigenvalues 
1 and 2 leads to instability in computing the 
generalized eigenvectors        and      . 

Similar issues occur in the other clusters of 
generalized eigenvalues.

3

EXISTENCE OF BEST LOW RANK
APPROXIMATIONS FOR TENSORS OF ORDER 3

ERIC EVERT AND LIEVEN DE LATHAUWER

Abstract. One of the most popular methods for computing a
CPD is Jennrich’s algorithm which selects a matrix subpencil of
a tensor, then computes a generalized eigenvalue decomposition of
the pencil to recover a factor matrix of the tensor. The popularity
of the algorithm stems from its success in many practical appli-
cations, and its ability to recover the CPD of generic low rank
tensors. However, Jennrich’s algorithm is known to suffer from
pencil based instability and can heavily under perform in specific
settings.

We propose two separate variations of Jennrich’s algorithm each
offering improvements over the original method. First, we discuss
a recursive generalized eigenspace decomposition (GESD) which
greatly improves on the stability of Jennrich’s algorithm. In a given
subpencil, GESD computes generalized eigenspaces corresponding
to clusters of well-separated generalized eigenvalues then uses those
generalized eigenspaces to express the original tensor as a sum of
tensors with reduced rank. This step is then recursively applied to
the reduced rank tensors until arriving at a sum of rank one tensors.
Since stability of eigenvalue decompositions is heavily impacted by
separation between eigenvalues, only performing computations for
sufficiently well separated clusters of eigenvalues removes on source
of instability in Jennrich’s algorithm.

Next, we illustrate that the full generalized eigenvalue decom-
position computed by Jennrich’s algorithm is unnecessary. Indeed,
computing only a QZ decomposition together with modal products
is already sufficient to reveal one factor matrix. This approach is
observed to both be faster and more accurate than Jennrich’s algo-
rithm for the initial factor matrix computation. In an extension of
this approach, a second factor matrix can be revealed by comput-
ing a second (different) QZ decomposition. The resulting method
is significantly faster than the classical Jennrich’s algorithm.
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Generalized EigenSpace Decomp: Improve accuracy by computing eigenspaces
corresponding to well separated eigenvalue clusters.

Clusters C1, C2, C3, C4 are well separated so can improve accuracy by only computing
the corresponding eigenspaces E1, E2, E3, E4.
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Use a new pencil to split eigenspaces!
Consider a new subpencil (Tm, Tn). The eigenvectors of this pencil are the same as
those of (Tk , Tℓ), but the corresponding eigenvalues will lie in new positions on the
unit circle.

The clusters C′
1, C′

2, C′
3, C′

4 are well separated, so can compute the eigenspaces
E ′

1, E ′
2, E ′

3, E ′
4.

Observe E1 = span{v1, v2} and E ′
1 = span{v1, v3, v6}. Thus v1 = E1 ∩ E ′

1.
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GESD recursively deflates tensor rank.
In our implementation, GESD recursively writes T as a sum of tensors of reduced rank.

In the example, GESD would use E1, E2, E3, E4 to write the rank 10 tensor T as

T = T 1 + T 2 + T 3 + T 4

where T 1, T 2, T 3 and T 4 have ranks 2, 3, 1 and 4, respectively. T 1 can then be
decomposed into a sum of rank 1 tensors using the pencil (T 1

m, T 1
n ), etc.

Variations in GESD are possible. E.g. one could compute intersections of eigenspaces as
described above rather than working recursively.
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GESD vs synthetic data
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Accuracy and speed against Rank 10 tensors of size 100 × 100 × 100 with highly
correlated factor matrix columns.
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Tensors with symmetric frontal slices

Say T ∈ RR×R×K has symmetric frontal slices (SFS) if Tk is symmetric for
k = 1, . . . , K .

Any SFS tensor T can be decomposed as

T =
∑L

ℓ=1 aℓ ⊗ aℓ ⊗ cℓ = + · · · + =

If L is as small as possible, then L is the SFS rank of T .

Rank is not necessarily equal to SFS rank! (Shitov)

Very common in Latent Variable Analysis/Blind Source Separation: slices are statistics
(symmetric)
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Positive definite matrices and the spectral norm

Say T ∈ RR×R is positive definite if T is symmetric and all eigenvalues of T are
positive. I.e.

vTTv = T ·1 vT ·2 vT > 0 for all 0 ̸= v ∈ RR

The spectral norm of T ∈ RR×R×K is

∥T ∥sp = max
∥vi ∥=1

T ·1 vT
1 ·2 vT

2 ·3 vT
3
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Low rank tensors with a positive definite slice mix are relatively closed

Theorem [Evert-De Lathauwer]
Let T ∈ RR×R×K be a tensor with border SFS rank at most R. If there is a vector
w ∈ RK such that

T ·3 wT ≻ 0.

Then T has rank and SFS rank equal to R.

Note: T ·3 wT =
∑K

k=1 wkTk .

Idea: PD property can be used in similar manner as eigenvalue multiplicity!
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Spectral norm bound guaranteeing existence of best low rank approximation
Theorem [Evert-De Lathauwer]
Let T , N ∈ RR×R×K and assume T has SFS rank R. If

∥N ∥sp < max
∥w∥=1

min
∥v∥=1

(T + N ) ·1 vT ·2 vT ·3 wT

then T + N has a best rank R approximation.

Consequence: Suppose you have some noisy rank R tensor T + N ∈ RR×R×K , and let
T̂ be any rank R approximation to T + N . If

∥T + N − T̂ ∥sp < min
∥v∥=1

(T + N ) ·1 vT ·2 vT ·3 wT

then T + N has a best rank R approximation.
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Computing our bound

Theorem [Evert-De Lathauwer]
Let T ∈ RR×R×K and assume T has SFS. The quantity

λ∗ = max
∥w∥=1

min
∥v∥=1

T ·1 vT ·2 vT ·3 wT

is computable via semidefinite programming

T0 T1
T2

Tb

M?

M?

< λ∗?
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Sharpness of the bound

Theorem [Evert-De Lathauwer]
Let T ∈ RR×R×K and assume T has SFS rank R. Set

λ∗ = max
∥w∥=1

min
∥v∥=1

T ·1 vT ·2 vT ·3 wT

and assume λ∗ ≥ 0. Then there exists a tensor N∗ ∈ RR×R×K with ∥N∗∥sp = λ∗ such
that no linear combination of frontal slices of T + N∗ is positive definite.

Furthermore, if K = 2, then any open set containing T + N∗ contains a tensor which
does not have a best rank R approximation.
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Numerical experiments: Second order blind identification
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Bound sharpness vs. 4 × 4 × 2 tensors. Approximations of T + αN∗
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Bound sharpness vs. 4 × 4 × 4 tensors. Approximations of T + αN∗
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