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® Tensor Decompositions 101

® An illustration of NTD to Music Information Retrieval
® Some theory on NMF/NTD and open questions

® Numerical optimization methods for NTD

e Off topic: Tensorly
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Matrices/ Tensors as multiway arrays

Let 7 a tensor in R™*"2X-X"d
modes: indexes of the tensor from 1 to d. e.g. i is the first mode index.

order: d. e.g. the tensor below is a third order tensor.
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Examples of tensors in data science
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Tensor as Data Properties Tensor as Model Parameters
Data Moments Convolutional Neural Networks

[figure from commons.wikimedia.org]
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Tensors and dimensionality reduction

Number of parameters:

7 T p=<g] D00

(/)(nd) O(dnr) O(dnr+ rd) O(dnrQ)

Consequently, tensor models can be used for:

Inverse Problems Compression, Low Complexity Model
® Matrix-Tensor completion ® Big Data
® Blind Source separation ® Data mining

® Denoising, deconvolution Neural Networks

® Phase retrieval Partial Differential Equations
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Tensors and dimensionality reduction

Number of parameters:
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Consequently, tensor models can be used for:

Inverse Problems Compression, Low Complexity Model
® Matrix-Tensor completion ® Big Data
® Blind Source separation ® Data mining

® Denoising, deconvolution Neural Networks
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From audio to time-frequency signals
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A word on the state-of-the-

Unsupervised Supervised

Signal Autosimilarity + post-processing Deep learning
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An idea: form a time-frequency tensor...

Chromagram
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...and decompose it to find redundancies!

Approximate Nonnegative Tucker Decomposition

The inner dimensions are hyperparameters!!
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State-of-the-art unsupervised results!
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Algorithm Pos Ros Fos Ps Rs Fs
NTD, with “oracle ranks” for each song || 67.1% 78.2% 71.5% | 78.5% 90.2% 83.1%
Neural Networks[Grill2015] 80.4% 62.7% 69.7% | 91.9% 71.1% 79.3%

Table: Averaged segmentation scores in the “oracle ranks” condition, compared to the current state-of-the-art
(non-blind) method.
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What is Tucker Decomposition

The Tucker format (3d order)

Input: Data tensor 7, core dimensions r1, r, r3
Parameters: W € R™*"t, H ¢ R™*2, Q € R™*™ and G € R *"2x"

n rn 3

Tijk = Z Z Z Wir, Hir, Qk’a Grinyry

9 92 93

T=(WeH®Q)G

D'EI_
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What is Tucker Decomposition %
The Tucker format (3d order)
Input: Data tensor T, core dimensions ri, r2, r3 \%
Parameters: W € R™"*1, H e R™*2 Q € R™*" and G € 2
n n 3 %
> &&
a

) Q)G
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Why Nonnegativity in Tucker decomposition, the NMF case

M= WH = WPP'H
but if W > 0 and H > 0, sometimes
WP>0and P'"H>0 = P =X
with 1 a permutation matrix and ¥ a positive diagonal matrix.

A collection of sufficient conditions for NMF identifiability

[Donoho2003]: Separability
[Huang2013]: sufficiently scattered condition
[Mia02007], Fu2015/Lin2015: Minimum Volume

For NTD, rotation ambiguities on all modes!

T = (WP e HP @ QP3) [(PT' @ Pt @ P 6]
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(approximate) Nonnegative Tucker Decomposition
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In practice, given data 7 and hyperparameters r1 » 3, we solve an optimization problem of the form

minimize D(T| ( WeH®Q)G) (1)

an/’l an/’z n3><r3 71><r2><r3
WERS ™, HER ™2, QERP T, GERY
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NTD identifia

The big open question: under which conditions is NTD
identifiable/essentially unique?

A few empirical observations:

® NTD factors and core can be recovered when they are very sparse, even without explicit sparsity
imposed
® Imposing sparsity helps a lot in recovering the true factors and core.

® [Murakami,Smile 1998, Rocci,Ten Berge 2022 ..] Rotation Tucker models to maximize number of
zeroes.
® [Morup,Hansen,Arnfred 2008] Sparsity penalty imposed by default.

Existing litterature
® [Zhou,Cichocki 2014] claim to links NTD identifiability to NMF identifiability of the unfoldings.

18/27



NTD for nnCANDELINC [C.2017]
Problems with nnCANDELINC
® Rank of core might increase

CANDELINC: Tucker format then PARAFAC
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® Factors of 7 might not be recovered
® NTD is hard to compute anyway

® Does not work in (my) pratice

II ai
X xT1;
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NTD for nnCANDELINC [Skau DeSantis 2022]

A few interesting concepts/facts:

® Nonnegative multilinear ranks
rank ()

® |ntersection of tensor cones and tensor product don't commute
® Minimal NTD has dimension equal to nonnegative multilinear ranks (may not exist)

® Canonical NTD when dimensions equal to nonnegative ranks of factors for a unique CPD tensor.

Proposition
Suppose 7 admits a unique CPD.
® Then there exists a canonical NTD which preserves its nonnegative rank.

® For any canonical NTD that preserves the rank, its factors have full nonnegative rank.

Core problem: selecting the right canonical NTD.
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Back to NMF algorithms

NMF and numerical optimization

argmin D(M, WH)
W>0,H>0

Usual loss functions:
® Frobenius loss D(M, WH) = ||M — WH||%
® Kullback-Leibler D(M, WH) = 3~ KL(My, [WH];) = >=; Mj Iog(%) + [WH]; — M
ij

® Beta-Divergence
® More exotic: Wasserstein distance [Rolet2016, Varol2019]0, ¢1 norm [Gillis2018] ...

A few remarks:
® Problem non-convex in general for (W, H) but “solvable” for fixed W or H.
® Beta-divergence loss is separable in columns of H (or rows of W).
This calls for block-coordinate descent methods:
® Hierarchical Alternating Least Squares (exact block-coordinate descent for £5 loss)
® Alternating Multiplicative Updates
® Alternating Proximal Gradient
L
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NTD algorithms mimic NMF algorithms

NTD and numerical optimization
argmin DIM,(W® H® Q)G)
W=>0,H>0,Q>0,G>0
Usual loss functions:
® Frobenius loss D(IM,(W @ H® Q)G) = |[M — (W& H® Q)G||?
* Kullback-Leibler D(M, (W ® H® Q) G) = 3, KL(My, [(W & H ® Q) Gl,,)

A few key points:
® The core update is a “vector” update (not matrix!)

® One must pay attention to update rules, to avoid computing big intermediate representations and
Kronecker products.

Existing algorithms (sample):
® HALS 4 Proximal Gradient for G
® Alternating MU
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What about sparsity?

In the first NTD paper [Morup 2008], sparsity was already considered.

Sparsity?

Most papers impose sparsity with ¢; norm.
Problem: Scale ambiguity!! For > 1,

1 A
IM — WHI[E +X[W[x > M~ ;WMHIIZF + 2 IWlh = imM = WHI|E + X[ W/|x
with A" < .
Consequence: minimal loss is the minimum of ||M — WH)||# but the minimum is not attained in
general!

® Several work around for NMF
® Constrain H on the hypersphere [Morup 2008][LeRoux2015]
® Use a more complex sparsity metric [Hoyer2002/2004]
® Use ¢ on H [??][Roald2022] How to use in MU?

® Problems with multiple sparsity penalties?
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Conclusion

Is NTD the new NMF?

Similarities between NMF and NTD
® Numerical Optimization
® Applications, to some extent
® Decomposition of data into a sum of parts

® Empirically, identifiability

Some major differences
® NTD theory requires multilinear algebra
® Almost no identifiability results available for NTD
® Connection between NTD and polytopes?
® NTD is hard to understand

Few dedicated algorithms, e.g. efficient initialization
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Tensorly ad 1: What is Tensorly

T\ Tensorly Open source and collaborative Python toolbox for tensors

Contents:
® Tensor objects from Numpy, Pytorch, Tensorflow. .. and soon support for efficient contractions.
® Tensor manipulations (reshape, permute and so)

® Some tensor decompositions (CP, constrained CP, Generalized CP, Tucker, Nonnegative Tucker,
TT, PARAFAC2, CMTF)

® Dataset loaders, visualisation tools (CP)
Code features:
® Back-end transparent for users and devs
® Collaborative! Issues/Pull Requests with reasonable response time
® Automatic unit tests

® User guide, API, Examples at tensorly.org

Sparse tensor storage and sparse-dedicated algorithms are to be improved!
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tensorly.org

NTD in Tensorly

Notebook demo for NTD applied to HSI
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Thank you for your attention!!
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