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Roadmap

• Tensor Decompositions 101
• An illustration of NTD to Music Information Retrieval
• Some theory on NMF/NTD and open questions
• Numerical optimization methods for NTD
• Off topic: Tensorly
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Matrices/Tensors as multiway arrays

Let T a tensor in Rn1×n2×...×nd

modes: indexes of the tensor from 1 to d. e.g. i is the first mode index.
order: d. e.g. the tensor below is a third order tensor.
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Examples of tensors in data science

Tensor as Raw Data
Excitation Emission

Matrices

Tensor as Raw Data
Hyperspectral Images

[courtesy of J Chanussot]

Tensor as Processed Data
Tensor spectrogram

Tensor as Data Properties
Data Moments

Tensor as Model Parameters
Convolutional Neural Networks

[figure from commons.wikimedia.org]
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Tensors and dimensionality reduction

Number of parameters:

O(nd)

+ . . .+

O(dnr) O(dnr + rd) O(dnr2)

Consequently, tensor models can be used for:

Inverse Problems

• Matrix-Tensor completion
• Blind Source separation
• Denoising, deconvolution
• Phase retrieval
• . . .

Compression, Low Complexity Model

• Big Data
• Data mining
• Neural Networks
• Partial Differential Equations
• . . .



6/27

Tensors and dimensionality reduction

Number of parameters:

O(nd)

+ . . .+

O(dnr) O(dnr + rd) O(dnr2)

Consequently, tensor models can be used for:

Inverse Problems

• Matrix-Tensor completion
• Blind Source separation
• Denoising, deconvolution
• Phase retrieval
• . . .

Compression, Low Complexity Model

• Big Data
• Data mining
• Neural Networks
• Partial Differential Equations
• . . .



7/27

Segmenting a song?
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A team effort

Axel Marmoret Nancy Bertin Frederic Bimbot Caglayan Tuna
PhD student CR CNRS DR CNRS Inria Engineer

Axel Marmoret, Jérémy Cohen, Nancy Bertin, Frédéric Bimbot. Uncovering Audio Patterns in Music with
Nonnegative Tucker Decomposition for Structural Segmentation. ISMIR 2020 - 21st International Society
for Music Information Retrieval, Oct 2020, Montréal (Online), Canada. pp.1-7
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From audio to time-frequency signals
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A word on the state-of-the-art
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An idea: form a time-frequency tensor…
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…and decompose it to find redundancies!

Approximate Nonnegative Tucker Decomposition

The inner dimensions are hyperparameters!!
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Back to segmentation
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State-of-the-art unsupervised results!
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Algorithm P0.5 R0.5 F0.5 P3 R3 F3
NTD, with “oracle ranks” for each song 67.1% 78.2% 71.5% 78.5% 90.2% 83.1%
Neural Networks[Grill2015] 80.4% 62.7% 69.7% 91.9% 71.1% 79.3%

Table: Averaged segmentation scores in the “oracle ranks” condition, compared to the current state-of-the-art
(non-blind) method.
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What is Tucker Decomposition

The Tucker format (3d order)
Input: Data tensor T , core dimensions r1, r2, r3
Parameters: W ∈ Rn1×r1 , H ∈ Rn2×r2 , Q ∈ Rn3×r3 and G ∈ Rr1×r2×r3

Tijk =

r1∑
q1

r2∑
q2

r3∑
q3

Wir1 Hjr2 Qkr3 Gr1r2r3

T = (W ⊗ H ⊗ Q)G

=

W

H

QG
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Why Nonnegativity in Tucker decomposition, the NMF case

M = WH = WPP−1H

but if W ≥ 0 and H ≥ 0, sometimes

WP ≥ 0 and P−1H ≥ 0 =⇒ P = ΠΣ

with Π a permutation matrix and Σ a positive diagonal matrix.

A collection of sufficient conditions for NMF identifiability
• [Donoho2003]: Separability
• [Huang2013]: sufficiently scattered condition
• [Miao2007], Fu2015/Lin2015: Minimum Volume

For NTD, rotation ambiguities on all modes!

T = (WP1 ⊗ HP2 ⊗ QP3)
[(

P−1
1 ⊗ P−1

2 ⊗ P−1
3

)
G
]
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(approximate) Nonnegative Tucker Decomposition

≈ ≥ 0
≥ 0 ≥ 0 ≥ 0

T ≈ W ×1 H ×2 Q ×3 G

In practice, given data T and hyperparameters r1,2,3, we solve an optimization problem of the form

minimize
W∈Rn1×r1

+ , H∈Rn2×r2
+ , Q∈Rn3×r3

+ , G∈Rr1×r2×r3
+

D(T | (W ⊗ H ⊗ Q)G) (1)
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NTD identifiability

The big open question: under which conditions is NTD
identifiable/essentially unique?

A few empirical observations:
• NTD factors and core can be recovered when they are very sparse, even without explicit sparsity

imposed
• Imposing sparsity helps a lot in recovering the true factors and core.

• [Murakami,Smile 1998, Rocci,Ten Berge 2022 …] Rotation Tucker models to maximize number of
zeroes.

• [Morup,Hansen,Arnfred 2008] Sparsity penalty imposed by default.

Existing litterature
• [Zhou,Cichocki 2014] claim to links NTD identifiability to NMF identifiability of the unfoldings.
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NTD for nnCANDELINC [C.2017]

CANDELINC: Tucker format then PARAFAC

≈

T ≈ (W ⊗ H ⊗ Q) G

≈

G ≈ (AG ⊗ BG ⊗ CG) Ir

Problems with nnCANDELINC
• Rank of core might increase
• Factors of T might not be recovered
• NTD is hard to compute anyway
• Does not work in (my) pratice
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NTD for nnCANDELINC [Skau DeSantis 2022]

A few interesting concepts/facts:
• Nonnegative multilinear ranks

rank+(T[n])

• Intersection of tensor cones and tensor product don’t commute
• Minimal NTD has dimension equal to nonnegative multilinear ranks (may not exist)
• Canonical NTD when dimensions equal to nonnegative ranks of factors for a unique CPD tensor.

Proposition
Suppose T admits a unique CPD.
• Then there exists a canonical NTD which preserves its nonnegative rank.
• For any canonical NTD that preserves the rank, its factors have full nonnegative rank.

Core problem: selecting the right canonical NTD.
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Back to NMF algorithms

NMF and numerical optimization

argmin
W≥0,H≥0

D(M,WH)

Usual loss functions:
• Frobenius loss D(M,WH) = ‖M − WH‖2

F

• Kullback-Leibler D(M,WH) =
∑

ij KL(Mij , [WH]ij) =
∑

ij Mij log(
Mij

[WH]ij
) + [WH]ij − Mij

• Beta-Divergence
• More exotic: Wasserstein distance [Rolet2016, Varol2019]0, `1 norm [Gillis2018] . . .

A few remarks:
• Problem non-convex in general for (W ,H) but “solvable” for fixed W or H.
• Beta-divergence loss is separable in columns of H (or rows of W ).

This calls for block-coordinate descent methods:
• Hierarchical Alternating Least Squares (exact block-coordinate descent for `2 loss)
• Alternating Multiplicative Updates
• Alternating Proximal Gradient
• . . .
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NTD algorithms mimic NMF algorithms

NTD and numerical optimization

argmin
W≥0,H≥0,Q≥0,G≥0

D(M, (W ⊗ H ⊗ Q)G)

Usual loss functions:
• Frobenius loss D(M, (W ⊗ H ⊗ Q)G) = ‖M − (W ⊗ H ⊗ Q)G‖2

F

• Kullback-Leibler D(M, (W ⊗ H ⊗ Q)G) =
∑

ijk KL(Mijk , [(W ⊗ H ⊗ Q)G]ijk)

A few key points:
• The core update is a “vector” update (not matrix!)
• One must pay attention to update rules, to avoid computing big intermediate representations and

Kronecker products.
Existing algorithms (sample):
• HALS + Proximal Gradient for G
• Alternating MU
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What about sparsity?

In the first NTD paper [Morup 2008], sparsity was already considered.

Sparsity?
Most papers impose sparsity with `1 norm.
Problem: Scale ambiguity!! For µ > 1,

‖M − WH‖2
F + λ‖W‖1 > ‖M − 1

µ
WµH‖2

F +
λ

µ
‖W‖1 = ‖M − WH‖2

F + λ′‖W‖1

with λ′ < λ.
Consequence: minimal loss is the minimum of ‖M − WH‖2

F but the minimum is not attained in
general!

• Several work around for NMF
• Constrain H on the hypersphere [Morup 2008][LeRoux2015]
• Use a more complex sparsity metric [Hoyer2002/2004]
• Use `2 on H [??][Roald2022] How to use in MU?

• Problems with multiple sparsity penalties?
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Conclusion

Is NTD the new NMF?

Similarities between NMF and NTD
• Numerical Optimization
• Applications, to some extent
• Decomposition of data into a sum of parts
• Empirically, identifiability

Some major differences
• NTD theory requires multilinear algebra
• Almost no identifiability results available for NTD
• Connection between NTD and polytopes?
• NTD is hard to understand
• Few dedicated algorithms, e.g. efficient initialization
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Tensorly ad 1: What is Tensorly

Open source and collaborative Python toolbox for tensors
Contents:
• Tensor objects from Numpy, Pytorch, Tensorflow. . . and soon support for efficient contractions.
• Tensor manipulations (reshape, permute and so)
• Some tensor decompositions (CP, constrained CP, Generalized CP, Tucker, Nonnegative Tucker,

TT, PARAFAC2, CMTF)
• Dataset loaders, visualisation tools (CP)

Code features:
• Back-end transparent for users and devs
• Collaborative! Issues/Pull Requests with reasonable response time
• Automatic unit tests
• User guide, API, Examples at tensorly.org

Sparse tensor storage and sparse-dedicated algorithms are to be improved!

tensorly.org
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NTD in Tensorly

Notebook demo for NTD applied to HSI



Thank you for your attention!!
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