
Ilmenau University of Technology
Communications Research Laboratory

1

Efficient Maximum Likelihood Estimation 
of a Low-Rank Probability Mass Tensor 

from Partial Observations 

Martin Haardt

Ilmenau University of Technology
Communications Research Laboratory

98684 Ilmenau, Germany

E-Mail: Martin.Haardt@tu-ilmenau.de

Homepage: http://www.tu-ilmenau.de/crl

Ilmenau University of Technology
Communications Research Laboratory

2

 Joint work with

Arie Yeredor, Tel Aviv University, Israel

Joseph Chege, TU Ilmenau, Germany

Acknowledgments



Ilmenau University of Technology
Communications Research Laboratory

3Outline

 Motivation for Estimating the joint PMF Tensor of a Set of Random Variables

 Modeling of the Naϊve Bayes Model via the CPD

 Joint PMF Tensor Estimation Methods

 Marginal-based Estimation

• LS (Least Squares) Criterion

• KLD (Kullback-Leibler Divergence) Criterion

 Data-based Estimation

• AD (Alternating Directions) Minimization

• EM (Expectation Maximization)

 Simulation Results

 Synthetic Data Experiments

• Speeding up the Convergence of EM: SQUAREM

 Real Data Experiments

 Conclusions

Ilmenau University of Technology
Communications Research Laboratory

4Outline

 Motivation for Estimating the joint PMF Tensor of a Set of Random Variables

 Modeling of the Naϊve Bayes Model via the CPD

 Joint PMF Tensor Estimation Methods

 Marginal-based Estimation

• LS (Least Squares) Criterion

• KLD (Kullback-Leibler Divergence) Criterion

 Data-based Estimation

• AD (Alternating Directions) Minimization

• EM (Expectation Maximization)

 Simulation Results

 Synthetic Data Experiments

• Speeding up the Convergence of EM: SQUAREM

 Real Data Experiments

 Conclusions



Ilmenau University of Technology
Communications Research Laboratory

5Motivation (1)

 Estimating the probability mass function (PMF) from partial observations of a 
discrete random vector is a core problem in statistical learning

 Knowledge of the joint PMF is considered as the gold-standard

 enables optimal estimation under criteria such as 

• mean squared error (MSE) and 

• minimum probability of error

 Useful applications include

 recommender systems – using the joint PMF of ratings, 

• predict missing ratings based on the conditional expectation of the 
available ratings and 

• make recommendations based on these predictions

 data classification – using the joint PMF of the features and the label, 

• infer the label of a test sample according to the MAP principle
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6Motivation (2)

 Usually, the full PMF is unknown

 needs to be estimated from the data during a ‘training’ stage

 Estimating the joint PMF via histograms considered virtually impossible

 curse of dimensionality, e.g., 10 variables with 10 distinct values each = 
1010 parameters to be estimated!

 histogram estimation very inaccurate – low probability of encountering 
any particular realization

 a lot of data is required to obtain a reliable estimate 
(even more in the case of incomplete data!)
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7Motivation (3)

 Consider a set of      random variables               

 Each variable        takes      discrete values

 Our aim is to estimate the joint PMF from (partial) realizations of the 
random variables

 How would we use                          ?

 data classification – given a set of features                       , compute the posterior 
probability and predict the label        using the MAP principle 

 recommender systems – given a subset of ratings                       , estimate        
using the conditional expectation
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8Motivating Example: 
Recommendation of Movies (1)

 Consider 4 movies each with 5 possible ratings:

Movie 1: Toy Story

Movie 2: Shrek

Movie 3: Inception

Movie 4: The Batman

 The joint PMF of a user’s ratings can be represented as a                        
tensor

 For example,                    is the probability that the user rated 
Toy Story as 1, Shrek as 3, Inception as 4, and The Batman as 5
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9Motivating Example: 
Recommendation of Movies (2)

 Suppose this user has rated Toy Story (t), Inception (n), and 
The Batman (b), but has not watched Shrek

 If we know the joint PMF, we can easily predict the user’s rating for 
Shrek

calculate the posterior probability vector

calculate the MMSE estimate of the rating for Shrek

based on the estimated rating, decide whether or not to 
recommend Shrek to the user 
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11CPD of a Joint PMF Tensor (1)

 The joint PMF                           can be represented as an    –way tensor

 Each element of      is the probability of a particular realization / index 
combination, i.e.,      

 admits a rank- canonical polyadic decomposition (CPD)

loading vector

factor matrix

outer product

Ilmenau University of Technology
Communications Research Laboratory

12CPD of a Joint PMF Tensor (2)

 The probability of a particular index combination is given by
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13Naϊve Bayes Model (1)

 In practice, random variables usually have some degree of 
dependence (i.e., not fully independent or fully dependent)

 A reasonable assumption: the random variables are independent
given another hidden (latent) random variable     taking a finite set of           
values

also known as the naïve Bayes model 

are independent given 
the latent variable 
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14Naïve Bayes Model (2)

 The probability of a particular realization according to the model is 

are independent given 
the latent variable 
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15The Naïve Bayes Model and the CPD (1)

CPD Naïve Bayes Model

a priori probability

conditional (a posteriori) probability

Probability simplex constraints
admits a non-negative CPD

[1] N. Kargas, N. D. Sidiropoulos, and X. Fu, “Tensors, Learning, and “Kolmogorov Extension” for Finite-
Alphabet Random Vectors,” IEEE Trans. Signal Process., vol. 66, no. 18, pp. 4854–4868, Sep. 2018.
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16The Naïve Bayes Model and the CPD (2)

 The naïve Bayes model leads to a nice Bayesian interpretation 
of the CPD

consider our earlier example with Toy Story, Shrek, Inception, and 
The Batman, with 5 possible ratings

 if there are            kinds of users, i.e., action lovers and animation
lovers, then we may have
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17The Naïve Bayes Model and the CPD (3) 

 Implication: any joint PMF admits a naïve Bayes representation with a 
finite latent alphabet [1]

 The number of states     the latent variable     can take is bounded by

 Uniqueness not guaranteed – in addition, CPD uniqueness conditions 
must be fulfilled

[1] N. Kargas, N. D. Sidiropoulos, and X. Fu, “Tensors, Learning, and “Kolmogorov Extension” for Finite-
Alphabet Random Vectors,” IEEE Trans. Signal Process., vol. 66, no. 18, pp. 4854–4868, Sep. 2018.
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18PMF Estimation Methods

 Two main approaches for the estimation of the PMF tensor

 marginal-based – estimate lower-order marginals and fit them to a CPD 
[1], [2]

 data-based – find maximum likelihood estimate of joint PMF using 
observed data [3]

[1] N. Kargas, N. D. Sidiropoulos, and X. Fu, “Tensors, Learning, and “Kolmogorov Extension” for Finite-Alphabet Random Vectors,” 
IEEE Trans. Signal Process., vol. 66, no. 18, pp. 4854–4868, Sep. 2018.

[2] A. Yeredor and M. Haardt, “Estimation of a Low-Rank Probability-Tensor from Sample Sub-Tensors via Joint Factorization 
Minimizing the Kullback-Leibler Divergence,” in Proc. 27th European Signal Processing Conference (EUSIPCO), A Coruna, 
Spain, Sep. 2019.

[3] A. Yeredor and M. Haardt, “Maximum Likelihood Estimation of a Low-Rank Probability Mass Tensor From Partial Observations,” 
IEEE Signal Process. Lett., vol. 26, no. 10, pp. 1551–1555, Oct. 2019.
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20Marginal-Based Estimation 

 The full joint PMF can be recovered from marginals of order        under relatively mild 
conditions [1]

 Idea: easier to obtain reliable empirical estimates of lower-order marginals

 Lower order marginal distributions also admit a non-negative CPD, e.g.,

due to probability 
simplex constraint

[1] N. Kargas, N. D. Sidiropoulos, and X. Fu, “Tensors, Learning, and “Kolmogorov Extension” for Finite-
Alphabet Random Vectors,” IEEE Trans. Signal Process., vol. 66, no. 18, pp. 4854–4868, Sep. 2018.
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21Marginal-Based Estimation: LS Criterion

 Estimate the third-order marginal PMF empirically, i.e., by counting all co-
occurrences of triplet combinations

 Marginal PMF estimate                             can be approximated by 

 Full joint PMF obtained by solving a least-squares (LS) coupled tensor 
factorization problem using AO-ADMM [1]

Third-order sub-tensor 
(empirical estimate)

Third-order CPD
(to fit to empirical estimate)

[1] N. Kargas, N. D. Sidiropoulos, and X. Fu, “Tensors, Learning, and “Kolmogorov Extension” for Finite-
Alphabet Random Vectors,” IEEE Trans. Signal Process., vol. 66, no. 18, pp. 4854–4868, Sep. 2018.
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22Marginal-Based Estimation

 The LS criterion [1]

 offers relatively convenient optimization procedures

 does not provide proper ‘weighting’ – may attribute zero probability
to an element of the estimated PMF even when the empirical probability 
is non-zero

 The Kullback-Leibler divergence (KLD) is a more suitable criterion in the 
context of PMF estimation [2]

 treats smaller empirical probabilities in a different way than larger ones

 forbids a solution that attributes zero probability to an element of the 
estimated PMF where the empirical probability is non-zero

[2] A. Yeredor and M. Haardt, “Estimation of a Low-Rank Probability-Tensor from Sample Sub-Tensors via Joint Factorization Minimizing the 
Kullback-Leibler Divergence,” in Proc. 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, Sep. 2019.
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23Marginal-Based Estimation: KLD Criterion

 The KLD between two PMFs                         and                         is

with equality if and only if

 If      is fixed, minimizing (11) w.r.t. amounts to minimizing

[2] A. Yeredor and M. Haardt, “Estimation of a Low-Rank Probability-Tensor from Sample Sub-Tensors via Joint Factorization Minimizing the 
Kullback-Leibler Divergence,” in Proc. 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, Sep. 2019.
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24Marginal-Based Estimation: KLD Criterion

 Thus, the following KLD-based coupled tensor factorization problem is posed

 Non-convex problem rewritten as two convex subproblems and solved using 
reparameterization techniques [2]

 The KLD criterion outperforms the LS criterion with respect to estimating the 
true PMF.

Third-order sub-tensor 
(empirical estimate)

Third-order CPD
(to fit to empirical estimate)

[2] A. Yeredor and M. Haardt, “Estimation of a Low-Rank Probability-Tensor from Sample Sub-Tensors via Joint Factorization Minimizing the 
Kullback-Leibler Divergence,” in Proc. 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, Sep. 2019.
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 Using the observed data, the maximum-likelihood (ML) estimate of the 
joint PMF tensor can be obtained [3]

 more efficient – no marginals required

 In the large-sample limit, maximizing likelihood corresponds to the 
minimization of the KLD between the observed data and the 
parametrized model distribution

Data-Based Estimation

[3] A. Yeredor and M. Haardt, “Maximum Likelihood Estimation of a Low-Rank Probability Mass Tensor From Partial Observations,” IEEE 
Signal Process. Lett., vol. 26, no. 10, pp. 1551–1555, Oct. 2019.
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27Data-Based Estimation: Problem Formulation

 Consider a discrete random vector                                           where               
each

 Let                                        be a random vector obtained as a partial 
observation of      such that (independently for each    )

 Goal: estimate joint PMF tensor      from     i.i.d. observations of     

outage probability

[3] A. Yeredor and M. Haardt, “Maximum Likelihood Estimation of a Low-Rank Probability Mass Tensor From Partial Observations,” IEEE 
Signal Process. Lett., vol. 26, no. 10, pp. 1551–1555, Oct. 2019.
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28Data-Based Estimation

 Let     be a realization of   

 If                   is the number of non-zero elements in     with indices                    
then,

 Factors corresponding to zero (unobserved) elements are marginalized out   

[3] A. Yeredor and M. Haardt, “Maximum Likelihood Estimation of a Low-Rank Probability Mass Tensor From Partial Observations,” IEEE 
Signal Process. Lett., vol. 26, no. 10, pp. 1551–1555, Oct. 2019.
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29Data-Based Estimation

 Example:            and  

[3] A. Yeredor and M. Haardt, “Maximum Likelihood Estimation of a Low-Rank Probability Mass Tensor From Partial Observations,” IEEE 
Signal Process. Lett., vol. 26, no. 10, pp. 1551–1555, Oct. 2019.
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30Data-Based Estimation

 The log-likelihood of     is given by                                                                                          

where

 For     i.i.d. observations                        the joint log-likelihood is (ignore constant)

 Optimization problem for ML estimation of                         is                                     

[3] A. Yeredor and M. Haardt, “Maximum Likelihood Estimation of a Low-Rank Probability Mass Tensor From Partial Observations,” IEEE 
Signal Process. Lett., vol. 26, no. 10, pp. 1551–1555, Oct. 2019.
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31Data-Based Estimation

 KLD-based alternating directions (AD) minimization [2]

 rewrite the non-convex problem as two convex subproblems, i.e., 
minimize w.r.t. and to each        separately and solve these tasks 
using reparametrization techniques

[2]  A. Yeredor and M. Haardt, “Estimation of a Low-Rank Probability-Tensor from Sample Sub-Tensors via Joint Factorization Minimizing the   
Kullback-Leibler Divergence,”  in Proc. 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, Sep. 2019.

[3]  A. Yeredor and M. Haardt, “Maximum Likelihood Estimation of a Low-Rank Probability Mass Tensor From Partial Observations,” IEEE Signal 
Process. Lett., vol. 26, no. 10, pp. 1551–1555, Oct. 2019.
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32Data-Based Estimation

 Expectation-maximization (EM) [3]

 arises due to the naïve Bayes model implied by the low-rank assumption

 define “complete data”                               where                            is the unknown latent state

 E-step: denote    and all       at the first iteration as      and compute

 M-step: 
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33Data-Based Estimation

 AD

 optimal solution to inner convex problems achievable

 is computationally expensive

 EM

 computationally cheaper (closed-form updates)

 may converge slowly

 A hybrid AD-EM algorithm is adopted [3]

 run a few (expensive) AD iterations to get to the vicinity of the global 
optimum

 switch to computationally cheaper EM for refinement

 The hybrid AD-EM algorithm obtains more accurate PMF estimates than the 
AO-ADMM algorithm based on triplets and the LS criterion
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34Simulation Results

 More insight into hybrid AD-EM algorithm needed

when exactly do we switch from AD to EM?

 is it sufficient to run EM alone?

how can we accelerate EM convergence?

how do the algorithms perform on real data?

 Extensive simulations carried out in two approaches

synthetic-data experiments

 real-data experiments – movie recommendation
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36Synthetic-Data Experiments

 Comparison of performance for the LS criterion (Triplets (LS)) and 
the KLD criterion (AD-EM)

 Comparison of AD-EM and EM performance

 convergence of the log likelihood

 different parameter settings

• number of observations T

• outage probability p

 different initialization strategies
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37Experimental Setup

 discrete random variables

 Alphabet size

 Ground-truth CPD components                                                    and 
normalized

 Observed data                    with outage probability 

 and      initialized randomly and normalized

 Results averaged over                independent trials 
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38Performance Metrics

 Mean Squared Relative Error (MSRE)     

 Kullback-Leibler Divergence (KLD) 

 Factor Match Score (FMS) [4]  

[4] E. C. Chi and T. G. Kolda, “On Tensors, Sparsity, and Nonnegative Factorizations,” SIAM J. Matrix Anal. & Appl., vol. 33, no. 4, pp. 1272–
1299, Jan. 2012.
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39LS criterion vs. KLD criterion

 Oracle ML – assumes the true latent state is known (provides lower bound)

 AD-EM (KLD criterion) outperforms the LS-based triplets (marginal) approach

[3] A. Yeredor and M. Haardt, “Maximum Likelihood Estimation of a Low-Rank Probability Mass Tensor From Partial Observations,” IEEE 
Signal Process. Lett., vol. 26, no. 10, pp. 1551–1555, Oct. 2019.
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40LS criterion vs. KLD criterion

[3] A. Yeredor and M. Haardt, “Maximum Likelihood Estimation of a Low-Rank Probability Mass Tensor From Partial Observations,” IEEE 
Signal Process. Lett., vol. 26, no. 10, pp. 1551–1555, Oct. 2019.

 Oracle ML – assumes the true latent state is known (provides lower bound)

 AD-EM (KLD criterion) outperforms the LS-based triplets (marginal) approach
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41AD-EM vs. EM: Convergence

 Parameters:

 Convergence achieved with EM alone
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42AD-EM vs. EM: Outage Probability

 Parameters:

 Running EM alone is sufficient
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44AD-EM vs. EM: Number of Observations

 Parameters:

 Running EM alone is sufficient
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45AD-EM vs. EM: Number of Observations
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47Speeding up EM Convergence: SQUAREM

 EM exhibits linear convergence

 Convergence rate decreases with an increase in the amount of missing data

 SQUAREM [5] applies a squaring technique [6] used to accelerate the 
convergence of the Cauchy (steepest descent) method for solving a system of 
linear equations 

 Key ingredient: EM iteration steps (fixed-point mapping) can be approximated by 
a linear equation

 Thus, the squaring technique can also be applied to EM to speed up convergence

 We adapt SQUAREM to the context of PMF estimation  SQUAREM-PMF

[5] R. Varadhan and C. Roland, “Simple and Globally Convergent Methods for Accelerating the Convergence of Any EM Algorithm,” 
Scandinavian Journal of Statistics, vol. 35, no. 2, pp. 335–353, 2008.

[6] M. Raydan, “Relaxed Steepest Descent and Cauchy-Barzilai-Borwein Method,” Optimization, pp. 155–167, 2002.
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48

Taylor series
expansion about

Linear Equation

EM iteration

Speeding up EM Convergence: SQUAREM

Linear Equation

Error equation

Update equation Error equation

Cauchy (steepest descent) method

Cauchy-Barzilai-Borwein (CBB) method

acceleration of 
convergence

Update equation Update equation Error equation

Update equation Error equation

SQUAREM

acceleration of 
convergence

Iterative method for EM

EM fixed point:

‘squaring’
‘squaring’

iterative method to 
solve linear equation

iterative method to 
solve linear equation

is the residual
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49Adapting SQUAREM: SQUAREM-PMF

 To preserve EM stability, the SQUAREM algorithm in [5] modifies the 
step size such that the negative log-likelihood always decreases

 For our PMF estimation problem, the SQUAREM update equation 
should additionally fulfill the probability simplex constraints

 We adapt the refinement procedure in [5] to refine the step size      
such that 

EM stability is preserved

probability simplex constraints are fulfilled      

[5] R. Varadhan and C. Roland, “Simple and Globally Convergent Methods for Accelerating the Convergence of Any EM Algorithm,” 
Scandinavian Journal of Statistics, vol. 35, no. 2, pp. 335–353, 2008.
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50

projection onto probability simplex, e.g., using [8]

Adapting the SQUAREM step size      [7]

find step size that ensures 
nonnegativity

[7] J. K. Chege, M. J. Grasis, A. Manina, A. Yeredor, and M. Haardt, “Efficient probability mass function estimation from partially observed 
data,” in Proc. of 56th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 2022.

[8] Y. Chen and X. Ye, “Projection Onto A Simplex,” arXiv, Feb. 09, 2011 [Online]. Available: http://arxiv.org/abs/1101.6081

compute current negative log-likelihood

projection onto probability simplex, e.g., using [8]

to avoid many likelihood 
computations later
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51The SQUAREM-PMF Algorithm [7]

two EM updates 

two-point linear approx. of EM fixed point 

ensures stability is preserved and prob. 
simplex constraints are fulfilled

final EM update

parameter vector

[7] J. K. Chege, M. J. Grasis, A. Manina, A. Yeredor, and M. Haardt, “Efficient probability mass function estimation from partially observed 
data,” in Proc. of 56th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 2022.
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52SQUAREM-PMF Performance: Setup

 Max no. of EM iterations

 Max no. of SQUAREM-PMF iterations

 AD iterations = 20

 AO iterations =      , ADMM iterations = 

 Stopping criterion

 Parameters

 Number of independent trials = 1000   
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 Mean Squared Error (MSE) between the current estimate of the 
parameter vector                   and the true parameter vector              , 
averaged over     independent trials 

 Negative Log-Likelihood (NLL) minus the overall minimum              
(across all four algorithms)

 Complementary Cumulative Distribution Function (CCDF)  of the 
runtime and the number of iterations         

SQUAREM-PMF Performance: Metrics
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54SQUAREM-PMF Performance

 SQUAREM-PMF converges faster and preserves EM stability

 Initial AD iterations not required – EM alone is sufficient        
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55SQUAREM-PMF Performance

SQUAREM-PMF runs 
approx. 3.6 times faster 
than EM with far fewer 
iterations
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56Outline

 Motivation for Estimating the joint PMF Tensor of a Set of Random Variables

 Modeling of the Naϊve Bayes Model via the CPD

 Joint PMF Tensor Estimation Methods

 Marginal-based Estimation

• LS (Least Squares) Criterion

• KLD (Kullback-Leibler Divergence) Criterion

 Data-based Estimation

• AD (Alternating Directions) Minimization

• EM (Expectation Maximization)

 Simulation Results

 Synthetic Data Experiments

• Speeding up the Convergence of EM: SQUAREM

 Real Data Experiments

 Conclusions
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57Real-Data Experiments: MovieLens Dataset

 Context: movie recommendation using the 20M MovieLens dataset [9]

 Contains 20M movie ratings on a half-star scale {0.5,...,5.0}

 We select          top-rated movies from action, animation, and comedy
genres

 Ratings mapped to the scale {1,...,10}

[9] F. M. Harper and J. A. Konstan, “The movielens datasets: History and context,” ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, Dec. 2015. 
[Online]. Available: https://doi.org/10.1145/2827872
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58Real-Data Experiments: Train/Val/Test Approach

 Initial dataset:

 3 genres (action, animation, comedy)

 10 top-rated movies

 users who have rated > 2 movies

 For each trial (             independent trials):

 shuffle users in initial dataset

 split into train/val/test datasets (70 % / 10 % / 20 %)

 training – estimate                 and 

 validation – find best parameters (rank, learning rate (AO-ADMM)) 
by hiding one rating and predicting it using various models

 retraining

• use combined train/val dataset and best parameters

• estimate                 and     again 

 testing – hide one rating per user and predict it using the retrained model

Dataset # users

Initial 84751

Training 59325

Validation 8476

Testing 16950
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59Real-Data Experiments: Prediction

 Ratings of   -th user :                                  and               if unobserved   

 Conditional expectation (MMSE estimate)

 MAP estimate
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60Real-Data Experiments: Metrics

 Root Mean Squared Error (RMSE)

 Mean Absolute Error (MAE)
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61Real-Data Experiments: Test Results (    std. dev.)
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62Conclusions

 Maximum likelihood estimation of a low-rank PMF tensor from partial 
observations 

 The KLD criterion is superior to the LS criterion in the context of
PMF estimation

 Extensive testing of AD-EM and EM algorithms using synthetic data

 running EM only is sufficient

 desirable – AD is computationally expensive

 Improved convergence rate of EM

 SQUAREM-PMF speeds up EM by approx. 3.6 times

 EM stability preserved by SQUAREM-PMF

 Testing of EM and SQUAREM-PMF on real data

 SQUAREM-PMF outperforms AO-ADMM

 SQUAREM-PMF performs comparably to EM (but converges faster)

[7] J. K. Chege, M. J. Grasis, A. Manina, A. Yeredor, and M. Haardt, “Efficient probability mass function estimation from partially observed 
data,” in Proc. of 56th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 2022.


