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5Motivation (1)

 Estimating the probability mass function (PMF) from partial observations of a 
discrete random vector is a core problem in statistical learning

 Knowledge of the joint PMF is considered as the gold-standard

 enables optimal estimation under criteria such as 

• mean squared error (MSE) and 

• minimum probability of error

 Useful applications include

 recommender systems – using the joint PMF of ratings, 

• predict missing ratings based on the conditional expectation of the 
available ratings and 

• make recommendations based on these predictions

 data classification – using the joint PMF of the features and the label, 

• infer the label of a test sample according to the MAP principle
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6Motivation (2)

 Usually, the full PMF is unknown

 needs to be estimated from the data during a ‘training’ stage

 Estimating the joint PMF via histograms considered virtually impossible

 curse of dimensionality, e.g., 10 variables with 10 distinct values each = 
1010 parameters to be estimated!

 histogram estimation very inaccurate – low probability of encountering 
any particular realization

 a lot of data is required to obtain a reliable estimate 
(even more in the case of incomplete data!)
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7Motivation (3)

 Consider a set of      random variables               

 Each variable        takes      discrete values

 Our aim is to estimate the joint PMF from (partial) realizations of the 
random variables

 How would we use                          ?

 data classification – given a set of features                       , compute the posterior 
probability and predict the label        using the MAP principle 

 recommender systems – given a subset of ratings                       , estimate        
using the conditional expectation
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8Motivating Example: 
Recommendation of Movies (1)

 Consider 4 movies each with 5 possible ratings:

Movie 1: Toy Story

Movie 2: Shrek

Movie 3: Inception

Movie 4: The Batman

 The joint PMF of a user’s ratings can be represented as a                        
tensor

 For example,                    is the probability that the user rated 
Toy Story as 1, Shrek as 3, Inception as 4, and The Batman as 5
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9Motivating Example: 
Recommendation of Movies (2)

 Suppose this user has rated Toy Story (t), Inception (n), and 
The Batman (b), but has not watched Shrek

 If we know the joint PMF, we can easily predict the user’s rating for 
Shrek

calculate the posterior probability vector

calculate the MMSE estimate of the rating for Shrek

based on the estimated rating, decide whether or not to 
recommend Shrek to the user 
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11CPD of a Joint PMF Tensor (1)

 The joint PMF                           can be represented as an    –way tensor

 Each element of      is the probability of a particular realization / index 
combination, i.e.,      

 admits a rank- canonical polyadic decomposition (CPD)

loading vector

factor matrix

outer product
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12CPD of a Joint PMF Tensor (2)

 The probability of a particular index combination is given by
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13Naϊve Bayes Model (1)

 In practice, random variables usually have some degree of 
dependence (i.e., not fully independent or fully dependent)

 A reasonable assumption: the random variables are independent
given another hidden (latent) random variable     taking a finite set of           
values

also known as the naïve Bayes model 

are independent given 
the latent variable 
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14Naïve Bayes Model (2)

 The probability of a particular realization according to the model is 

are independent given 
the latent variable 
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15The Naïve Bayes Model and the CPD (1)

CPD Naïve Bayes Model

a priori probability

conditional (a posteriori) probability

Probability simplex constraints
admits a non-negative CPD

[1] N. Kargas, N. D. Sidiropoulos, and X. Fu, “Tensors, Learning, and “Kolmogorov Extension” for Finite-
Alphabet Random Vectors,” IEEE Trans. Signal Process., vol. 66, no. 18, pp. 4854–4868, Sep. 2018.
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16The Naïve Bayes Model and the CPD (2)

 The naïve Bayes model leads to a nice Bayesian interpretation 
of the CPD

consider our earlier example with Toy Story, Shrek, Inception, and 
The Batman, with 5 possible ratings

 if there are            kinds of users, i.e., action lovers and animation
lovers, then we may have

1

2

3

4

5

0.20 0.05

0.40 0.10

0.30 0.25

0.05 0.35

0.05 0.25
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0.15 0.15

0.10 0.45

0.05 0.35

0.02 0.20

0.08 0.40

0.15 0.30

0.20 0.05

0.55 0.05

0.04 0.45

0.06 0.35

0.15 0.10

0.40 0.05

0.35 0.05

[0.4, 0.6]T
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17The Naïve Bayes Model and the CPD (3) 

 Implication: any joint PMF admits a naïve Bayes representation with a 
finite latent alphabet [1]

 The number of states     the latent variable     can take is bounded by

 Uniqueness not guaranteed – in addition, CPD uniqueness conditions 
must be fulfilled

[1] N. Kargas, N. D. Sidiropoulos, and X. Fu, “Tensors, Learning, and “Kolmogorov Extension” for Finite-
Alphabet Random Vectors,” IEEE Trans. Signal Process., vol. 66, no. 18, pp. 4854–4868, Sep. 2018.
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18PMF Estimation Methods

 Two main approaches for the estimation of the PMF tensor

 marginal-based – estimate lower-order marginals and fit them to a CPD 
[1], [2]

 data-based – find maximum likelihood estimate of joint PMF using 
observed data [3]

[1] N. Kargas, N. D. Sidiropoulos, and X. Fu, “Tensors, Learning, and “Kolmogorov Extension” for Finite-Alphabet Random Vectors,” 
IEEE Trans. Signal Process., vol. 66, no. 18, pp. 4854–4868, Sep. 2018.

[2] A. Yeredor and M. Haardt, “Estimation of a Low-Rank Probability-Tensor from Sample Sub-Tensors via Joint Factorization 
Minimizing the Kullback-Leibler Divergence,” in Proc. 27th European Signal Processing Conference (EUSIPCO), A Coruna, 
Spain, Sep. 2019.

[3] A. Yeredor and M. Haardt, “Maximum Likelihood Estimation of a Low-Rank Probability Mass Tensor From Partial Observations,” 
IEEE Signal Process. Lett., vol. 26, no. 10, pp. 1551–1555, Oct. 2019.
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20Marginal-Based Estimation 

 The full joint PMF can be recovered from marginals of order        under relatively mild 
conditions [1]

 Idea: easier to obtain reliable empirical estimates of lower-order marginals

 Lower order marginal distributions also admit a non-negative CPD, e.g.,

due to probability 
simplex constraint

[1] N. Kargas, N. D. Sidiropoulos, and X. Fu, “Tensors, Learning, and “Kolmogorov Extension” for Finite-
Alphabet Random Vectors,” IEEE Trans. Signal Process., vol. 66, no. 18, pp. 4854–4868, Sep. 2018.
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21Marginal-Based Estimation: LS Criterion

 Estimate the third-order marginal PMF empirically, i.e., by counting all co-
occurrences of triplet combinations

 Marginal PMF estimate                             can be approximated by 

 Full joint PMF obtained by solving a least-squares (LS) coupled tensor 
factorization problem using AO-ADMM [1]

Third-order sub-tensor 
(empirical estimate)

Third-order CPD
(to fit to empirical estimate)

[1] N. Kargas, N. D. Sidiropoulos, and X. Fu, “Tensors, Learning, and “Kolmogorov Extension” for Finite-
Alphabet Random Vectors,” IEEE Trans. Signal Process., vol. 66, no. 18, pp. 4854–4868, Sep. 2018.
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22Marginal-Based Estimation

 The LS criterion [1]

 offers relatively convenient optimization procedures

 does not provide proper ‘weighting’ – may attribute zero probability
to an element of the estimated PMF even when the empirical probability 
is non-zero

 The Kullback-Leibler divergence (KLD) is a more suitable criterion in the 
context of PMF estimation [2]

 treats smaller empirical probabilities in a different way than larger ones

 forbids a solution that attributes zero probability to an element of the 
estimated PMF where the empirical probability is non-zero

[2] A. Yeredor and M. Haardt, “Estimation of a Low-Rank Probability-Tensor from Sample Sub-Tensors via Joint Factorization Minimizing the 
Kullback-Leibler Divergence,” in Proc. 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, Sep. 2019.
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23Marginal-Based Estimation: KLD Criterion

 The KLD between two PMFs                         and                         is

with equality if and only if

 If      is fixed, minimizing (11) w.r.t. amounts to minimizing

[2] A. Yeredor and M. Haardt, “Estimation of a Low-Rank Probability-Tensor from Sample Sub-Tensors via Joint Factorization Minimizing the 
Kullback-Leibler Divergence,” in Proc. 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, Sep. 2019.
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24Marginal-Based Estimation: KLD Criterion

 Thus, the following KLD-based coupled tensor factorization problem is posed

 Non-convex problem rewritten as two convex subproblems and solved using 
reparameterization techniques [2]

 The KLD criterion outperforms the LS criterion with respect to estimating the 
true PMF.

Third-order sub-tensor 
(empirical estimate)

Third-order CPD
(to fit to empirical estimate)

[2] A. Yeredor and M. Haardt, “Estimation of a Low-Rank Probability-Tensor from Sample Sub-Tensors via Joint Factorization Minimizing the 
Kullback-Leibler Divergence,” in Proc. 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, Sep. 2019.



Ilmenau University of Technology
Communications Research Laboratory

25Outline

 Motivation for Estimating the joint PMF Tensor of a Set of Random Variables

 Modeling of the Naϊve Bayes Model via the CPD

 Joint PMF Tensor Estimation Methods

 Marginal-based Estimation

• LS (Least Squares) Criterion

• KLD (Kullback-Leibler Divergence) Criterion

 Data-based Estimation

• AD (Alternating Directions) Minimization

• EM (Expectation Maximization)

 Simulation Results

 Synthetic Data Experiments

• Speeding up the Convergence of EM: SQUAREM

 Real Data Experiments

 Conclusions

Ilmenau University of Technology
Communications Research Laboratory

26

 Using the observed data, the maximum-likelihood (ML) estimate of the 
joint PMF tensor can be obtained [3]

 more efficient – no marginals required

 In the large-sample limit, maximizing likelihood corresponds to the 
minimization of the KLD between the observed data and the 
parametrized model distribution

Data-Based Estimation

[3] A. Yeredor and M. Haardt, “Maximum Likelihood Estimation of a Low-Rank Probability Mass Tensor From Partial Observations,” IEEE 
Signal Process. Lett., vol. 26, no. 10, pp. 1551–1555, Oct. 2019.
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27Data-Based Estimation: Problem Formulation

 Consider a discrete random vector                                           where               
each

 Let                                        be a random vector obtained as a partial 
observation of      such that (independently for each    )

 Goal: estimate joint PMF tensor      from     i.i.d. observations of     

outage probability

[3] A. Yeredor and M. Haardt, “Maximum Likelihood Estimation of a Low-Rank Probability Mass Tensor From Partial Observations,” IEEE 
Signal Process. Lett., vol. 26, no. 10, pp. 1551–1555, Oct. 2019.
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28Data-Based Estimation

 Let     be a realization of   

 If                   is the number of non-zero elements in     with indices                    
then,

 Factors corresponding to zero (unobserved) elements are marginalized out   

[3] A. Yeredor and M. Haardt, “Maximum Likelihood Estimation of a Low-Rank Probability Mass Tensor From Partial Observations,” IEEE 
Signal Process. Lett., vol. 26, no. 10, pp. 1551–1555, Oct. 2019.
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29Data-Based Estimation

 Example:            and  

[3] A. Yeredor and M. Haardt, “Maximum Likelihood Estimation of a Low-Rank Probability Mass Tensor From Partial Observations,” IEEE 
Signal Process. Lett., vol. 26, no. 10, pp. 1551–1555, Oct. 2019.
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30Data-Based Estimation

 The log-likelihood of     is given by                                                                                          

where

 For     i.i.d. observations                        the joint log-likelihood is (ignore constant)

 Optimization problem for ML estimation of                         is                                     

[3] A. Yeredor and M. Haardt, “Maximum Likelihood Estimation of a Low-Rank Probability Mass Tensor From Partial Observations,” IEEE 
Signal Process. Lett., vol. 26, no. 10, pp. 1551–1555, Oct. 2019.
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31Data-Based Estimation

 KLD-based alternating directions (AD) minimization [2]

 rewrite the non-convex problem as two convex subproblems, i.e., 
minimize w.r.t. and to each        separately and solve these tasks 
using reparametrization techniques

[2]  A. Yeredor and M. Haardt, “Estimation of a Low-Rank Probability-Tensor from Sample Sub-Tensors via Joint Factorization Minimizing the   
Kullback-Leibler Divergence,”  in Proc. 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, Sep. 2019.

[3]  A. Yeredor and M. Haardt, “Maximum Likelihood Estimation of a Low-Rank Probability Mass Tensor From Partial Observations,” IEEE Signal 
Process. Lett., vol. 26, no. 10, pp. 1551–1555, Oct. 2019.
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32Data-Based Estimation

 Expectation-maximization (EM) [3]

 arises due to the naïve Bayes model implied by the low-rank assumption

 define “complete data”                               where                            is the unknown latent state

 E-step: denote    and all       at the first iteration as      and compute

 M-step: 
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33Data-Based Estimation

 AD

 optimal solution to inner convex problems achievable

 is computationally expensive

 EM

 computationally cheaper (closed-form updates)

 may converge slowly

 A hybrid AD-EM algorithm is adopted [3]

 run a few (expensive) AD iterations to get to the vicinity of the global 
optimum

 switch to computationally cheaper EM for refinement

 The hybrid AD-EM algorithm obtains more accurate PMF estimates than the 
AO-ADMM algorithm based on triplets and the LS criterion
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34Simulation Results

 More insight into hybrid AD-EM algorithm needed

when exactly do we switch from AD to EM?

 is it sufficient to run EM alone?

how can we accelerate EM convergence?

how do the algorithms perform on real data?

 Extensive simulations carried out in two approaches

synthetic-data experiments

 real-data experiments – movie recommendation
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36Synthetic-Data Experiments

 Comparison of performance for the LS criterion (Triplets (LS)) and 
the KLD criterion (AD-EM)

 Comparison of AD-EM and EM performance

 convergence of the log likelihood

 different parameter settings

• number of observations T

• outage probability p

 different initialization strategies
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37Experimental Setup

 discrete random variables

 Alphabet size

 Ground-truth CPD components                                                    and 
normalized

 Observed data                    with outage probability 

 and      initialized randomly and normalized

 Results averaged over                independent trials 
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38Performance Metrics

 Mean Squared Relative Error (MSRE)     

 Kullback-Leibler Divergence (KLD) 

 Factor Match Score (FMS) [4]  

[4] E. C. Chi and T. G. Kolda, “On Tensors, Sparsity, and Nonnegative Factorizations,” SIAM J. Matrix Anal. & Appl., vol. 33, no. 4, pp. 1272–
1299, Jan. 2012.
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39LS criterion vs. KLD criterion

 Oracle ML – assumes the true latent state is known (provides lower bound)

 AD-EM (KLD criterion) outperforms the LS-based triplets (marginal) approach

[3] A. Yeredor and M. Haardt, “Maximum Likelihood Estimation of a Low-Rank Probability Mass Tensor From Partial Observations,” IEEE 
Signal Process. Lett., vol. 26, no. 10, pp. 1551–1555, Oct. 2019.
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40LS criterion vs. KLD criterion

[3] A. Yeredor and M. Haardt, “Maximum Likelihood Estimation of a Low-Rank Probability Mass Tensor From Partial Observations,” IEEE 
Signal Process. Lett., vol. 26, no. 10, pp. 1551–1555, Oct. 2019.

 Oracle ML – assumes the true latent state is known (provides lower bound)

 AD-EM (KLD criterion) outperforms the LS-based triplets (marginal) approach
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41AD-EM vs. EM: Convergence

 Parameters:

 Convergence achieved with EM alone
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42AD-EM vs. EM: Outage Probability

 Parameters:

 Running EM alone is sufficient
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43AD-EM vs. EM: Outage Probability

 Parameters:

 Running EM alone is sufficient
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44AD-EM vs. EM: Number of Observations

 Parameters:

 Running EM alone is sufficient
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45AD-EM vs. EM: Number of Observations

 Parameters:

 Running EM alone is sufficient
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47Speeding up EM Convergence: SQUAREM

 EM exhibits linear convergence

 Convergence rate decreases with an increase in the amount of missing data

 SQUAREM [5] applies a squaring technique [6] used to accelerate the 
convergence of the Cauchy (steepest descent) method for solving a system of 
linear equations 

 Key ingredient: EM iteration steps (fixed-point mapping) can be approximated by 
a linear equation

 Thus, the squaring technique can also be applied to EM to speed up convergence

 We adapt SQUAREM to the context of PMF estimation  SQUAREM-PMF

[5] R. Varadhan and C. Roland, “Simple and Globally Convergent Methods for Accelerating the Convergence of Any EM Algorithm,” 
Scandinavian Journal of Statistics, vol. 35, no. 2, pp. 335–353, 2008.

[6] M. Raydan, “Relaxed Steepest Descent and Cauchy-Barzilai-Borwein Method,” Optimization, pp. 155–167, 2002.
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48

Taylor series
expansion about

Linear Equation

EM iteration

Speeding up EM Convergence: SQUAREM

Linear Equation

Error equation

Update equation Error equation

Cauchy (steepest descent) method

Cauchy-Barzilai-Borwein (CBB) method

acceleration of 
convergence

Update equation Update equation Error equation

Update equation Error equation

SQUAREM

acceleration of 
convergence

Iterative method for EM

EM fixed point:

‘squaring’
‘squaring’

iterative method to 
solve linear equation

iterative method to 
solve linear equation

is the residual



Ilmenau University of Technology
Communications Research Laboratory

49Adapting SQUAREM: SQUAREM-PMF

 To preserve EM stability, the SQUAREM algorithm in [5] modifies the 
step size such that the negative log-likelihood always decreases

 For our PMF estimation problem, the SQUAREM update equation 
should additionally fulfill the probability simplex constraints

 We adapt the refinement procedure in [5] to refine the step size      
such that 

EM stability is preserved

probability simplex constraints are fulfilled      

[5] R. Varadhan and C. Roland, “Simple and Globally Convergent Methods for Accelerating the Convergence of Any EM Algorithm,” 
Scandinavian Journal of Statistics, vol. 35, no. 2, pp. 335–353, 2008.
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50

projection onto probability simplex, e.g., using [8]

Adapting the SQUAREM step size      [7]

find step size that ensures 
nonnegativity

[7] J. K. Chege, M. J. Grasis, A. Manina, A. Yeredor, and M. Haardt, “Efficient probability mass function estimation from partially observed 
data,” in Proc. of 56th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 2022.

[8] Y. Chen and X. Ye, “Projection Onto A Simplex,” arXiv, Feb. 09, 2011 [Online]. Available: http://arxiv.org/abs/1101.6081

compute current negative log-likelihood

projection onto probability simplex, e.g., using [8]

to avoid many likelihood 
computations later
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51The SQUAREM-PMF Algorithm [7]

two EM updates 

two-point linear approx. of EM fixed point 

ensures stability is preserved and prob. 
simplex constraints are fulfilled

final EM update

parameter vector

[7] J. K. Chege, M. J. Grasis, A. Manina, A. Yeredor, and M. Haardt, “Efficient probability mass function estimation from partially observed 
data,” in Proc. of 56th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 2022.
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52SQUAREM-PMF Performance: Setup

 Max no. of EM iterations

 Max no. of SQUAREM-PMF iterations

 AD iterations = 20

 AO iterations =      , ADMM iterations = 

 Stopping criterion

 Parameters

 Number of independent trials = 1000   
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53

 Mean Squared Error (MSE) between the current estimate of the 
parameter vector                   and the true parameter vector              , 
averaged over     independent trials 

 Negative Log-Likelihood (NLL) minus the overall minimum              
(across all four algorithms)

 Complementary Cumulative Distribution Function (CCDF)  of the 
runtime and the number of iterations         

SQUAREM-PMF Performance: Metrics

Ilmenau University of Technology
Communications Research Laboratory

54SQUAREM-PMF Performance

 SQUAREM-PMF converges faster and preserves EM stability

 Initial AD iterations not required – EM alone is sufficient        
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55SQUAREM-PMF Performance

SQUAREM-PMF runs 
approx. 3.6 times faster 
than EM with far fewer 
iterations
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57Real-Data Experiments: MovieLens Dataset

 Context: movie recommendation using the 20M MovieLens dataset [9]

 Contains 20M movie ratings on a half-star scale {0.5,...,5.0}

 We select          top-rated movies from action, animation, and comedy
genres

 Ratings mapped to the scale {1,...,10}

[9] F. M. Harper and J. A. Konstan, “The movielens datasets: History and context,” ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, Dec. 2015. 
[Online]. Available: https://doi.org/10.1145/2827872
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58Real-Data Experiments: Train/Val/Test Approach

 Initial dataset:

 3 genres (action, animation, comedy)

 10 top-rated movies

 users who have rated > 2 movies

 For each trial (             independent trials):

 shuffle users in initial dataset

 split into train/val/test datasets (70 % / 10 % / 20 %)

 training – estimate                 and 

 validation – find best parameters (rank, learning rate (AO-ADMM)) 
by hiding one rating and predicting it using various models

 retraining

• use combined train/val dataset and best parameters

• estimate                 and     again 

 testing – hide one rating per user and predict it using the retrained model

Dataset # users

Initial 84751

Training 59325

Validation 8476

Testing 16950
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59Real-Data Experiments: Prediction

 Ratings of   -th user :                                  and               if unobserved   

 Conditional expectation (MMSE estimate)

 MAP estimate
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60Real-Data Experiments: Metrics

 Root Mean Squared Error (RMSE)

 Mean Absolute Error (MAE)
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61Real-Data Experiments: Test Results (    std. dev.)
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62Conclusions

 Maximum likelihood estimation of a low-rank PMF tensor from partial 
observations 

 The KLD criterion is superior to the LS criterion in the context of
PMF estimation

 Extensive testing of AD-EM and EM algorithms using synthetic data

 running EM only is sufficient

 desirable – AD is computationally expensive

 Improved convergence rate of EM

 SQUAREM-PMF speeds up EM by approx. 3.6 times

 EM stability preserved by SQUAREM-PMF

 Testing of EM and SQUAREM-PMF on real data

 SQUAREM-PMF outperforms AO-ADMM

 SQUAREM-PMF performs comparably to EM (but converges faster)

[7] J. K. Chege, M. J. Grasis, A. Manina, A. Yeredor, and M. Haardt, “Efficient probability mass function estimation from partially observed 
data,” in Proc. of 56th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 2022.


