

51

SQUAREM-PMF Input: $\{A_{n,0}\}_{n=1}^N, \lambda_0$ Output: ML estimates $\{\hat{A}_n\}_{n=1}^N, \hat{\lambda}$ 1. Construct $\boldsymbol{\theta}_0 = [\operatorname{vec}^{\mathsf{T}}(\boldsymbol{A}_{1,0}), \dots, \operatorname{vec}^{\mathsf{T}}(\boldsymbol{A}_{N,0}), \boldsymbol{\lambda}_0^{\mathsf{T}}]^{\mathsf{T}}$ parameter vector 2. for k = 1, ..., K2. If k = 1, ..., K3. $\theta_1 = f(\theta_0)$ 4. $\theta_2 = f(\theta_1)$ two EM updates 5. $r^{(k)} = \theta_1 - \theta_0$ 6. $v^{(k)} = (\theta_2 - \theta_1) - r^{(k)}$ two-point linear approx. of EM fixed point $\alpha_k = -\|\boldsymbol{r}^{(k)}\| / \|\boldsymbol{v}^{(k)}\|$ 7. $\alpha_k = -\|r^{(k)}\|_{\|}\|v^{(k)}\|_{\|}$ modify α_k using the proposed adaptation procedure ensures stability is preserved and prob. simplex constraints are fulfilled 8. 9. $\boldsymbol{\theta}_0 = \boldsymbol{f}(\boldsymbol{\theta}^{(k)})$ final EM update 10. if $\|\boldsymbol{\theta}^{(k)} - \boldsymbol{\theta}_0\| < \epsilon$ Reconstruct $\{A_n^{(k)}\}_{n=1}^N$ and $\boldsymbol{\lambda}^{(k)}$ from $\boldsymbol{\theta}^{(k)}$ 11. break 12.end if 13.14. end for[7] J. K. Chege, M. J. Grasis, A. Manina, A. Yeredor, and M. Haardt, "Efficient probability mass function estimation from partially observed data," in Proc. of 56th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 2022.

Algorithm	Estimator	RMSE	MAE
AO-ADMM	MMSE	$0.8452 {\pm} 0.004$	$0.6595 {\pm} 0.003$
	MAP	$0.9715 {\pm} 0.006$	$0.6558 {\pm} 0.004$
EM	MMSE	$0.8192{\pm}0.004$	$0.6430{\pm}0.003$
	MAP	$0.9731 {\pm} 0.006$	$0.6498 {\pm} 0.005$
SQUAREM-PMF	MMSE	$0.8193{\pm}0.004$	$0.6429{\pm}0.003$
	MAP	$0.9735 {\pm} 0.006$	$0.6496 {\pm} 0.004$
Global average		$0.9385 {\pm} 0.004$	$0.7305 {\pm} 0.003$
User average		$0.9399 {\pm} 0.005$	$0.7270{\pm}0.004$
Movie average		$0.9399 {\pm} 0.005$	$0.7270 {\pm} 0.004$
Random guess		$2.1077 {\pm} 0.010$	1.7145 ± 0.009

